Properties

Label 19360.h.4.h1.a1
Order $ 2^{3} \cdot 5 \cdot 11^{2} $
Index $ 2^{2} $
Normal No

Downloads

Learn more

Subgroup ($H$) information

Description:$C_{44}.F_{11}$
Order: \(4840\)\(\medspace = 2^{3} \cdot 5 \cdot 11^{2} \)
Index: \(4\)\(\medspace = 2^{2} \)
Exponent: \(220\)\(\medspace = 2^{2} \cdot 5 \cdot 11 \)
Generators: $a^{5}bc^{5}d^{30}, d^{4}, a^{2}, d^{22}, d^{11}, c$ Copy content Toggle raw display
Derived length: $2$

The subgroup is nonabelian, supersolvable (hence solvable and monomial), and metabelian.

Ambient group ($G$) information

Description: $C_{11}^2:(C_{10}\times \SD_{16})$
Order: \(19360\)\(\medspace = 2^{5} \cdot 5 \cdot 11^{2} \)
Exponent: \(440\)\(\medspace = 2^{3} \cdot 5 \cdot 11 \)
Derived length:$3$

The ambient group is nonabelian and monomial (hence solvable).

Automorphism information

While the subgroup $H$ is not characteristic, the stabilizer $S$ of $H$ in the automorphism group $\operatorname{Aut}(G)$ of the ambient group acts on $H$, yielding a homomorphism $\operatorname{res} : S \to \operatorname{Aut}(H)$. The image of $\operatorname{res}$ on the inner automorphisms $\operatorname{Inn}(G) \cap S$ is the Weyl group $W = N_G(H) / Z_G(H)$.

$\operatorname{Aut}(G)$$C_{11}^2.C_2^3.C_5.C_2^5$
$\operatorname{Aut}(H)$ $C_{11}^2.C_{10}^2.C_2^3$
$W$$D_{22}:F_{11}$, of order \(4840\)\(\medspace = 2^{3} \cdot 5 \cdot 11^{2} \)

Related subgroups

Centralizer:$C_2$
Normalizer:$C_{11}:(Q_8\times F_{11})$
Normal closure:$C_{11}:(Q_8\times F_{11})$
Core:$C_{11}^2:C_{20}$
Minimal over-subgroups:$C_{11}:(Q_8\times F_{11})$
Maximal under-subgroups:$C_{11}^2:C_{20}$$C_{11}^2:C_{20}$$C_{11}^2:C_{20}$$C_{11}^2:Q_8$$C_{44}.C_{10}$$C_{44}.C_{10}$

Other information

Number of subgroups in this conjugacy class$2$
Möbius function$0$
Projective image$C_2\times D_{11}^2:C_{10}$