Properties

Label 18966528.c.512.a1
Order $ 2^{2} \cdot 3^{3} \cdot 7^{3} $
Index $ 2^{9} $
Normal No

Downloads

Learn more

Subgroup ($H$) information

Description:$C_7^3:C_3^2:D_6$
Order: \(37044\)\(\medspace = 2^{2} \cdot 3^{3} \cdot 7^{3} \)
Index: \(512\)\(\medspace = 2^{9} \)
Exponent: \(42\)\(\medspace = 2 \cdot 3 \cdot 7 \)
Generators: $\langle(4,5,6,20,24,7,22), (4,22,7,24,20,6,5)(10,18,19,12,16,13,15), (9,17,21) \!\cdots\! \rangle$ Copy content Toggle raw display
Derived length: $4$

The subgroup is maximal, nonabelian, and solvable. Whether it is monomial has not been computed.

Ambient group ($G$) information

Description: $C_2^9.C_7^3:C_3^2:D_6$
Order: \(18966528\)\(\medspace = 2^{11} \cdot 3^{3} \cdot 7^{3} \)
Exponent: \(84\)\(\medspace = 2^{2} \cdot 3 \cdot 7 \)
Derived length:$5$

The ambient group is nonabelian and solvable. Whether it is monomial has not been computed.

Automorphism information

While the subgroup $H$ is not characteristic, the stabilizer $S$ of $H$ in the automorphism group $\operatorname{Aut}(G)$ of the ambient group acts on $H$, yielding a homomorphism $\operatorname{res} : S \to \operatorname{Aut}(H)$. The image of $\operatorname{res}$ on the inner automorphisms $\operatorname{Inn}(G) \cap S$ is the Weyl group $W = N_G(H) / Z_G(H)$.

$\operatorname{Aut}(G)$$C_2^{10}.C_7^3:C_3\wr S_3$, of order \(56899584\)\(\medspace = 2^{11} \cdot 3^{4} \cdot 7^{3} \)
$\operatorname{Aut}(H)$ $C_2\times C_7^3.\He_3.Q_8.C_6$
$W$$C_7^3:C_3^2:S_3$, of order \(18522\)\(\medspace = 2 \cdot 3^{3} \cdot 7^{3} \)

Related subgroups

Centralizer: not computed
Normalizer:$C_7^3:C_3^2:D_6$
Normal closure:$C_2^9.C_7^3:C_3^2:D_6$
Core:$C_2$

Other information

Number of subgroups in this autjugacy class$512$
Number of conjugacy classes in this autjugacy class$1$
Möbius function not computed
Projective image$C_2^9.C_7^3:C_3^2:S_3$