Properties

Label 18966528.c.1.a1
Order $ 2^{11} \cdot 3^{3} \cdot 7^{3} $
Index $ 1 $
Normal Yes

Downloads

Learn more

Subgroup ($H$) information

Description:$C_2^9.C_7^3:C_3^2:D_6$
Order: \(18966528\)\(\medspace = 2^{11} \cdot 3^{3} \cdot 7^{3} \)
Index: $1$
Exponent: \(84\)\(\medspace = 2^{2} \cdot 3 \cdot 7 \)
Generators: $\langle(2,4,9,20)(3,6,14,8)(5,11,22,23)(7,17,24,21)(10,16,18,13,19,15,12), (1,3,8,18,23,22,12,21,6,16,2,4,10,9,5,13,14,7,19,17,24) \!\cdots\! \rangle$ Copy content Toggle raw display
Derived length: $5$

The subgroup is the radical (hence characteristic, normal, and solvable), a semidirect factor, nonabelian, and a Hall subgroup. Whether it is a direct factor or monomial has not been computed.

Ambient group ($G$) information

Description: $C_2^9.C_7^3:C_3^2:D_6$
Order: \(18966528\)\(\medspace = 2^{11} \cdot 3^{3} \cdot 7^{3} \)
Exponent: \(84\)\(\medspace = 2^{2} \cdot 3 \cdot 7 \)
Derived length:$5$

The ambient group is nonabelian and solvable. Whether it is monomial has not been computed.

Quotient group ($Q$) structure

Description: $C_1$
Order: $1$
Exponent: $1$
Automorphism Group: $C_1$, of order $1$
Outer Automorphisms: $C_1$, of order $1$
Derived length: $0$

The quotient is cyclic (hence abelian, nilpotent, solvable, supersolvable, monomial, elementary (for every $p$), hyperelementary, metacyclic, metabelian, a Z-group, and an A-group), a $p$-group (for every $p$), perfect, and rational.

Automorphism information

Since the subgroup $H$ is characteristic, the automorphism group $\operatorname{Aut}(G)$ of the ambient group acts on $H$, yielding a homomorphism $\operatorname{res} : \operatorname{Aut}(G) \to \operatorname{Aut}(H)$. The image of $\operatorname{res}$ on the inner automorphism group $\operatorname{Inn}(G)$ is the Weyl group $W = G / Z_G(H)$.

$\operatorname{Aut}(G)$$C_2^{10}.C_7^3:C_3\wr S_3$, of order \(56899584\)\(\medspace = 2^{11} \cdot 3^{4} \cdot 7^{3} \)
$\operatorname{Aut}(H)$ $C_2^{10}.C_7^3:C_3\wr S_3$, of order \(56899584\)\(\medspace = 2^{11} \cdot 3^{4} \cdot 7^{3} \)
$W$$C_2^9.C_7^3:C_3^2:S_3$, of order \(9483264\)\(\medspace = 2^{10} \cdot 3^{3} \cdot 7^{3} \)

Related subgroups

Centralizer: not computed
Normalizer:$C_2^9.C_7^3:C_3^2:D_6$

Other information

Number of conjugacy classes in this autjugacy class$1$
Möbius function not computed
Projective image$C_2^9.C_7^3:C_3^2:S_3$