Properties

Label 186624.dy.4.E
Order $ 2^{6} \cdot 3^{6} $
Index $ 2^{2} $
Normal No

Downloads

Learn more

Subgroup ($H$) information

Description:not computed
Order: \(46656\)\(\medspace = 2^{6} \cdot 3^{6} \)
Index: \(4\)\(\medspace = 2^{2} \)
Exponent: not computed
Generators: $c^{3}, a^{2}b^{3}c^{2}e^{5}f^{5}g^{5}, g^{3}, c^{2}d^{4}e^{2}f^{5}g^{4}, e^{2}g^{2}, f^{2}g^{4}, e^{3}g^{3}, b^{2}d^{3}e^{2}g^{4}, f^{3}g^{3}, d^{2}e^{5}g^{2}, d^{3}f^{3}, g^{2}$ Copy content Toggle raw display
Derived length: not computed

The subgroup is nonabelian and solvable. Whether it is elementary, hyperelementary, monomial, simple, quasisimple, perfect, almost simple, or rational has not been computed.

Ambient group ($G$) information

Description: $C_3^4.S_4^2:C_4$
Order: \(186624\)\(\medspace = 2^{8} \cdot 3^{6} \)
Exponent: \(24\)\(\medspace = 2^{3} \cdot 3 \)
Derived length:$4$

The ambient group is nonabelian and solvable. Whether it is monomial has not been computed.

Automorphism information

While the subgroup $H$ is not characteristic, the stabilizer $S$ of $H$ in the automorphism group $\operatorname{Aut}(G)$ of the ambient group acts on $H$, yielding a homomorphism $\operatorname{res} : S \to \operatorname{Aut}(H)$. The image of $\operatorname{res}$ on the inner automorphisms $\operatorname{Inn}(G) \cap S$ is the Weyl group $W = N_G(H) / Z_G(H)$.

$\operatorname{Aut}(G)$$C_6^4.D_6\wr C_2$, of order \(373248\)\(\medspace = 2^{9} \cdot 3^{6} \)
$\operatorname{Aut}(H)$ not computed
$\card{W}$ not computed

Related subgroups

Centralizer: not computed
Normalizer:$C_2^4.C_3^4:C_3.D_6.C_2$
Normal closure:$C_2^4.C_3^4:C_3.D_6.C_2$
Core:$C_2^4.C_3^4:C_3.S_3$

Other information

Number of subgroups in this autjugacy class$2$
Number of conjugacy classes in this autjugacy class$1$
Möbius function not computed
Projective image$C_3^4.S_4^2:C_4$