Subgroup ($H$) information
Description: | $C_6\times S_3$ |
Order: | \(36\)\(\medspace = 2^{2} \cdot 3^{2} \) |
Index: | \(51\)\(\medspace = 3 \cdot 17 \) |
Exponent: | \(6\)\(\medspace = 2 \cdot 3 \) |
Generators: |
$a, b^{3}, c, b^{2}c^{2}d^{34}$
|
Derived length: | $2$ |
The subgroup is nonabelian, metacyclic (hence solvable, supersolvable, monomial, and metabelian), and an A-group.
Ambient group ($G$) information
Description: | $\He_3:D_{34}$ |
Order: | \(1836\)\(\medspace = 2^{2} \cdot 3^{3} \cdot 17 \) |
Exponent: | \(102\)\(\medspace = 2 \cdot 3 \cdot 17 \) |
Derived length: | $3$ |
The ambient group is nonabelian and supersolvable (hence solvable and monomial).
Automorphism information
While the subgroup $H$ is not characteristic, the stabilizer $S$ of $H$ in the automorphism group $\operatorname{Aut}(G)$ of the ambient group acts on $H$, yielding a homomorphism $\operatorname{res} : S \to \operatorname{Aut}(H)$. The image of $\operatorname{res}$ on the inner automorphisms $\operatorname{Inn}(G) \cap S$ is the Weyl group $W = N_G(H) / Z_G(H)$.
$\operatorname{Aut}(G)$ | $\PSU(3,2).C_{51}.C_8.C_2^2$ |
$\operatorname{Aut}(H)$ | $C_2\times D_6$, of order \(24\)\(\medspace = 2^{3} \cdot 3 \) |
$\operatorname{res}(S)$ | $D_6$, of order \(12\)\(\medspace = 2^{2} \cdot 3 \) |
$\card{\operatorname{ker}(\operatorname{res})}$ | \(48\)\(\medspace = 2^{4} \cdot 3 \) |
$W$ | $S_3$, of order \(6\)\(\medspace = 2 \cdot 3 \) |
Related subgroups
Other information
Number of subgroups in this conjugacy class | $51$ |
Möbius function | $1$ |
Projective image | $C_{51}:D_6$ |