Properties

Label 1836.48.17.a1.a1
Order $ 2^{2} \cdot 3^{3} $
Index $ 17 $
Normal No

Downloads

Learn more

Subgroup ($H$) information

Description:$C_3^2:D_6$
Order: \(108\)\(\medspace = 2^{2} \cdot 3^{3} \)
Index: \(17\)
Exponent: \(6\)\(\medspace = 2 \cdot 3 \)
Generators: $a, c, b^{3}, b^{2}, d^{34}$ Copy content Toggle raw display
Derived length: $3$

The subgroup is maximal, nonabelian, a Hall subgroup, and supersolvable (hence solvable and monomial).

Ambient group ($G$) information

Description: $\He_3:D_{34}$
Order: \(1836\)\(\medspace = 2^{2} \cdot 3^{3} \cdot 17 \)
Exponent: \(102\)\(\medspace = 2 \cdot 3 \cdot 17 \)
Derived length:$3$

The ambient group is nonabelian and supersolvable (hence solvable and monomial).

Automorphism information

While the subgroup $H$ is not characteristic, the stabilizer $S$ of $H$ in the automorphism group $\operatorname{Aut}(G)$ of the ambient group acts on $H$, yielding a homomorphism $\operatorname{res} : S \to \operatorname{Aut}(H)$. The image of $\operatorname{res}$ on the inner automorphisms $\operatorname{Inn}(G) \cap S$ is the Weyl group $W = N_G(H) / Z_G(H)$.

$\operatorname{Aut}(G)$$\PSU(3,2).C_{51}.C_8.C_2^2$
$\operatorname{Aut}(H)$ $C_2\times C_3^2:\GL(2,3)$, of order \(864\)\(\medspace = 2^{5} \cdot 3^{3} \)
$\operatorname{res}(S)$$C_3^2:\GL(2,3)$, of order \(432\)\(\medspace = 2^{4} \cdot 3^{3} \)
$\card{\operatorname{ker}(\operatorname{res})}$\(16\)\(\medspace = 2^{4} \)
$W$$C_3:S_3$, of order \(18\)\(\medspace = 2 \cdot 3^{2} \)

Related subgroups

Centralizer:$C_6$
Normalizer:$C_3^2:D_6$
Normal closure:$\He_3:D_{34}$
Core:$C_3^2:S_3$
Minimal over-subgroups:$\He_3:D_{34}$
Maximal under-subgroups:$C_3^2:S_3$$C_2\times \He_3$$C_3^2:S_3$$C_6\times S_3$$C_6\times S_3$$C_6\times S_3$$C_6\times S_3$

Other information

Number of subgroups in this conjugacy class$17$
Möbius function$-1$
Projective image$C_{51}:D_6$