Properties

Label 1824.368.2.g1.a1
Order $ 2^{4} \cdot 3 \cdot 19 $
Index $ 2 $
Normal Yes

Downloads

Learn more

Subgroup ($H$) information

Description:$C_{19}:(C_3\times Q_{16})$
Order: \(912\)\(\medspace = 2^{4} \cdot 3 \cdot 19 \)
Index: \(2\)
Exponent: \(456\)\(\medspace = 2^{3} \cdot 3 \cdot 19 \)
Generators: $b^{18}, b^{12}, c^{2}, b^{8}, b^{3}, ac^{19}$ Copy content Toggle raw display
Derived length: $2$

The subgroup is characteristic (hence normal), maximal, a semidirect factor, nonabelian, supersolvable (hence solvable and monomial), and metabelian.

Ambient group ($G$) information

Description: $C_{38}.(C_6\times D_4)$
Order: \(1824\)\(\medspace = 2^{5} \cdot 3 \cdot 19 \)
Exponent: \(456\)\(\medspace = 2^{3} \cdot 3 \cdot 19 \)
Derived length:$2$

The ambient group is nonabelian, supersolvable (hence solvable and monomial), and metabelian.

Quotient group ($Q$) structure

Description: $C_2$
Order: \(2\)
Exponent: \(2\)
Automorphism Group: $C_1$, of order $1$
Outer Automorphisms: $C_1$, of order $1$
Derived length: $1$

The quotient is cyclic (hence abelian, nilpotent, solvable, supersolvable, monomial, elementary, hyperelementary, metacyclic, metabelian, a Z-group, and an A-group), a $p$-group, simple, and rational.

Automorphism information

Since the subgroup $H$ is characteristic, the automorphism group $\operatorname{Aut}(G)$ of the ambient group acts on $H$, yielding a homomorphism $\operatorname{res} : \operatorname{Aut}(G) \to \operatorname{Aut}(H)$. The image of $\operatorname{res}$ on the inner automorphism group $\operatorname{Inn}(G)$ is the Weyl group $W = G / Z_G(H)$.

$\operatorname{Aut}(G)$$C_{38}.C_{18}.C_2^4$
$\operatorname{Aut}(H)$ $C_{38}.C_{18}.C_2^3$
$\card{\operatorname{res}(\operatorname{Aut}(G))}$\(5472\)\(\medspace = 2^{5} \cdot 3^{2} \cdot 19 \)
$\card{\operatorname{ker}(\operatorname{res})}$\(2\)
$W$$D_{38}:C_6$, of order \(456\)\(\medspace = 2^{3} \cdot 3 \cdot 19 \)

Related subgroups

Centralizer:$C_4$
Normalizer:$C_{38}.(C_6\times D_4)$
Complements:$C_2$ $C_2$ $C_2$
Minimal over-subgroups:$C_{38}.(C_6\times D_4)$
Maximal under-subgroups:$C_{76}.C_6$$C_{76}.C_6$$C_{19}:C_{24}$$C_{19}:Q_{16}$$C_3\times Q_{16}$

Other information

Möbius function$-1$
Projective image$C_2\times D_{38}:C_6$