Properties

Label 1824.368.38.g1.a1
Order $ 2^{4} \cdot 3 $
Index $ 2 \cdot 19 $
Normal No

Downloads

Learn more

Subgroup ($H$) information

Description:$C_3\times Q_{16}$
Order: \(48\)\(\medspace = 2^{4} \cdot 3 \)
Index: \(38\)\(\medspace = 2 \cdot 19 \)
Exponent: \(24\)\(\medspace = 2^{3} \cdot 3 \)
Generators: $ac^{19}, b^{12}, b^{3}, b^{8}, b^{18}$ Copy content Toggle raw display
Nilpotency class: $3$
Derived length: $2$

The subgroup is nonabelian, elementary for $p = 2$ (hence nilpotent, solvable, supersolvable, monomial, and hyperelementary), and metacyclic (hence metabelian).

Ambient group ($G$) information

Description: $C_{38}.(C_6\times D_4)$
Order: \(1824\)\(\medspace = 2^{5} \cdot 3 \cdot 19 \)
Exponent: \(456\)\(\medspace = 2^{3} \cdot 3 \cdot 19 \)
Derived length:$2$

The ambient group is nonabelian, supersolvable (hence solvable and monomial), and metabelian.

Automorphism information

While the subgroup $H$ is not characteristic, the stabilizer $S$ of $H$ in the automorphism group $\operatorname{Aut}(G)$ of the ambient group acts on $H$, yielding a homomorphism $\operatorname{res} : S \to \operatorname{Aut}(H)$. The image of $\operatorname{res}$ on the inner automorphisms $\operatorname{Inn}(G) \cap S$ is the Weyl group $W = N_G(H) / Z_G(H)$.

$\operatorname{Aut}(G)$$C_{38}.C_{18}.C_2^4$
$\operatorname{Aut}(H)$ $C_8:C_2^3$, of order \(64\)\(\medspace = 2^{6} \)
$\operatorname{res}(S)$$C_2\times D_4$, of order \(16\)\(\medspace = 2^{4} \)
$\card{\operatorname{ker}(\operatorname{res})}$\(36\)\(\medspace = 2^{2} \cdot 3^{2} \)
$W$$D_4$, of order \(8\)\(\medspace = 2^{3} \)

Related subgroups

Centralizer:$C_{12}$
Normalizer:$D_8:C_6$
Normal closure:$C_{19}:(C_3\times Q_{16})$
Core:$Q_8$
Minimal over-subgroups:$C_{19}:(C_3\times Q_{16})$$D_8:C_6$
Maximal under-subgroups:$C_3\times Q_8$$C_3\times Q_8$$C_{24}$$Q_{16}$

Other information

Number of subgroups in this conjugacy class$19$
Möbius function$1$
Projective image$C_2\times D_{38}:C_6$