Properties

Label 1824.368.4.d1.a1
Order $ 2^{3} \cdot 3 \cdot 19 $
Index $ 2^{2} $
Normal Yes

Downloads

Learn more

Subgroup ($H$) information

Description:$C_{76}.C_6$
Order: \(456\)\(\medspace = 2^{3} \cdot 3 \cdot 19 \)
Index: \(4\)\(\medspace = 2^{2} \)
Exponent: \(228\)\(\medspace = 2^{2} \cdot 3 \cdot 19 \)
Generators: $b^{12}, c^{2}, b^{8}, b^{18}, ac^{19}$ Copy content Toggle raw display
Derived length: $2$

The subgroup is characteristic (hence normal), nonabelian, and metacyclic (hence solvable, supersolvable, monomial, and metabelian).

Ambient group ($G$) information

Description: $C_{38}.(C_6\times D_4)$
Order: \(1824\)\(\medspace = 2^{5} \cdot 3 \cdot 19 \)
Exponent: \(456\)\(\medspace = 2^{3} \cdot 3 \cdot 19 \)
Derived length:$2$

The ambient group is nonabelian, supersolvable (hence solvable and monomial), and metabelian.

Quotient group ($Q$) structure

Description: $C_2^2$
Order: \(4\)\(\medspace = 2^{2} \)
Exponent: \(2\)
Automorphism Group: $S_3$, of order \(6\)\(\medspace = 2 \cdot 3 \)
Outer Automorphisms: $S_3$, of order \(6\)\(\medspace = 2 \cdot 3 \)
Derived length: $1$

The quotient is abelian (hence nilpotent, solvable, supersolvable, monomial, metabelian, and an A-group), a $p$-group (hence elementary and hyperelementary), metacyclic, and rational.

Automorphism information

Since the subgroup $H$ is characteristic, the automorphism group $\operatorname{Aut}(G)$ of the ambient group acts on $H$, yielding a homomorphism $\operatorname{res} : \operatorname{Aut}(G) \to \operatorname{Aut}(H)$. The image of $\operatorname{res}$ on the inner automorphism group $\operatorname{Inn}(G)$ is the Weyl group $W = G / Z_G(H)$.

$\operatorname{Aut}(G)$$C_{38}.C_{18}.C_2^4$
$\operatorname{Aut}(H)$ $S_4\times F_{19}$, of order \(8208\)\(\medspace = 2^{4} \cdot 3^{3} \cdot 19 \)
$\operatorname{res}(\operatorname{Aut}(G))$$D_4\times F_{19}$, of order \(2736\)\(\medspace = 2^{4} \cdot 3^{2} \cdot 19 \)
$\card{\operatorname{ker}(\operatorname{res})}$\(4\)\(\medspace = 2^{2} \)
$W$$D_{38}:C_6$, of order \(456\)\(\medspace = 2^{3} \cdot 3 \cdot 19 \)

Related subgroups

Centralizer:$C_4$
Normalizer:$C_{38}.(C_6\times D_4)$
Minimal over-subgroups:$(C_2\times C_{76}):C_6$$D_{76}.C_6$$C_{19}:(C_3\times Q_{16})$
Maximal under-subgroups:$C_{19}:C_{12}$$C_{19}:C_{12}$$Q_8\times C_{19}$$C_3\times Q_8$

Other information

Möbius function$2$
Projective image$C_2\times D_{38}:C_6$