Properties

Label 1792.1083486.7.a1
Order $ 2^{8} $
Index $ 7 $
Normal Yes

Downloads

Learn more

Subgroup ($H$) information

Description:$C_2^5:D_4$
Order: \(256\)\(\medspace = 2^{8} \)
Index: \(7\)
Exponent: \(4\)\(\medspace = 2^{2} \)
Generators: $a^{7}, g, bce, e, cd$ Copy content Toggle raw display
Nilpotency class: $2$
Derived length: $2$

The subgroup is the Fitting subgroup (hence characteristic, normal, nilpotent, solvable, supersolvable, and monomial), maximal, a semidirect factor, nonabelian, a $2$-Sylow subgroup (hence a Hall subgroup), a $p$-group (hence elementary and hyperelementary), metabelian, and rational.

Ambient group ($G$) information

Description: $C_2^5:F_8$
Order: \(1792\)\(\medspace = 2^{8} \cdot 7 \)
Exponent: \(28\)\(\medspace = 2^{2} \cdot 7 \)
Derived length:$2$

The ambient group is nonabelian, monomial (hence solvable), and metabelian.

Quotient group ($Q$) structure

Description: $C_7$
Order: \(7\)
Exponent: \(7\)
Automorphism Group: $C_6$, of order \(6\)\(\medspace = 2 \cdot 3 \)
Outer Automorphisms: $C_6$, of order \(6\)\(\medspace = 2 \cdot 3 \)
Nilpotency class: $1$
Derived length: $1$

The quotient is cyclic (hence abelian, nilpotent, solvable, supersolvable, monomial, elementary, hyperelementary, metacyclic, metabelian, a Z-group, and an A-group), a $p$-group, and simple.

Automorphism information

Since the subgroup $H$ is characteristic, the automorphism group $\operatorname{Aut}(G)$ of the ambient group acts on $H$, yielding a homomorphism $\operatorname{res} : \operatorname{Aut}(G) \to \operatorname{Aut}(H)$. The image of $\operatorname{res}$ on the inner automorphism group $\operatorname{Inn}(G)$ is the Weyl group $W = G / Z_G(H)$.

$\operatorname{Aut}(G)$$C_2^6:C_7.A_4.C_2^2$
$\operatorname{Aut}(H)$ $C_2^{15}.C_2^4.\PSL(2,7)$
$\card{\operatorname{res}(\operatorname{Aut}(G))}$\(2688\)\(\medspace = 2^{7} \cdot 3 \cdot 7 \)
$\card{\operatorname{ker}(\operatorname{res})}$\(8\)\(\medspace = 2^{3} \)
$W$$C_2\times F_8$, of order \(112\)\(\medspace = 2^{4} \cdot 7 \)

Related subgroups

Centralizer:$C_2^4$
Normalizer:$C_2^5:F_8$
Complements:$C_7$
Minimal over-subgroups:$C_2^5:F_8$
Maximal under-subgroups:$C_2^7$$C_2^3\wr C_2$$C_2^4:D_4$$C_2^5:C_4$$C_2^3\wr C_2$

Other information

Number of conjugacy classes in this autjugacy class$1$
Möbius function$-1$
Projective image$C_2^4:F_8$