Properties

Label 1792.1083486.256.a1
Order $ 7 $
Index $ 2^{8} $
Normal No

Downloads

Learn more

Subgroup ($H$) information

Description:$C_7$
Order: \(7\)
Index: \(256\)\(\medspace = 2^{8} \)
Exponent: \(7\)
Generators: $a^{2}$ Copy content Toggle raw display
Nilpotency class: $1$
Derived length: $1$

The subgroup is cyclic (hence abelian, nilpotent, solvable, supersolvable, monomial, elementary, hyperelementary, metacyclic, metabelian, a Z-group, and an A-group), a $7$-Sylow subgroup (hence a Hall subgroup), a $p$-group, and simple.

Ambient group ($G$) information

Description: $C_2^5:F_8$
Order: \(1792\)\(\medspace = 2^{8} \cdot 7 \)
Exponent: \(28\)\(\medspace = 2^{2} \cdot 7 \)
Derived length:$2$

The ambient group is nonabelian, monomial (hence solvable), and metabelian.

Automorphism information

While the subgroup $H$ is not characteristic, the stabilizer $S$ of $H$ in the automorphism group $\operatorname{Aut}(G)$ of the ambient group acts on $H$, yielding a homomorphism $\operatorname{res} : S \to \operatorname{Aut}(H)$. The image of $\operatorname{res}$ on the inner automorphisms $\operatorname{Inn}(G) \cap S$ is the Weyl group $W = N_G(H) / Z_G(H)$.

$\operatorname{Aut}(G)$$C_2^6:C_7.A_4.C_2^2$
$\operatorname{Aut}(H)$ $C_6$, of order \(6\)\(\medspace = 2 \cdot 3 \)
$\operatorname{res}(S)$$C_3$, of order \(3\)
$\card{\operatorname{ker}(\operatorname{res})}$\(112\)\(\medspace = 2^{4} \cdot 7 \)
$W$$C_1$, of order $1$

Related subgroups

Centralizer:$C_2\times C_{14}$
Normalizer:$C_2\times C_{14}$
Normal closure:$C_2^3:F_8$
Core:$C_1$
Minimal over-subgroups:$F_8$$F_8$$C_{14}$$C_{14}$
Maximal under-subgroups:$C_1$

Other information

Number of subgroups in this autjugacy class$64$
Number of conjugacy classes in this autjugacy class$1$
Möbius function$0$
Projective image$C_2^5:F_8$