Subgroup ($H$) information
Description: | $C_2^3\wr C_2$ |
Order: | \(128\)\(\medspace = 2^{7} \) |
Index: | \(14\)\(\medspace = 2 \cdot 7 \) |
Exponent: | \(4\)\(\medspace = 2^{2} \) |
Generators: |
$g, bce, cd, e$
|
Nilpotency class: | $2$ |
Derived length: | $2$ |
The subgroup is normal, a semidirect factor, nonabelian, a $p$-group (hence nilpotent, solvable, supersolvable, monomial, elementary, and hyperelementary), metabelian, and rational.
Ambient group ($G$) information
Description: | $C_2^5:F_8$ |
Order: | \(1792\)\(\medspace = 2^{8} \cdot 7 \) |
Exponent: | \(28\)\(\medspace = 2^{2} \cdot 7 \) |
Derived length: | $2$ |
The ambient group is nonabelian, monomial (hence solvable), and metabelian.
Quotient group ($Q$) structure
Description: | $C_{14}$ |
Order: | \(14\)\(\medspace = 2 \cdot 7 \) |
Exponent: | \(14\)\(\medspace = 2 \cdot 7 \) |
Automorphism Group: | $C_6$, of order \(6\)\(\medspace = 2 \cdot 3 \) |
Outer Automorphisms: | $C_6$, of order \(6\)\(\medspace = 2 \cdot 3 \) |
Nilpotency class: | $1$ |
Derived length: | $1$ |
The quotient is cyclic (hence abelian, nilpotent, solvable, supersolvable, monomial, elementary ($p = 2,7$), hyperelementary, metacyclic, metabelian, a Z-group, and an A-group).
Automorphism information
While the subgroup $H$ is not characteristic, the stabilizer $S$ of $H$ in the automorphism group $\operatorname{Aut}(G)$ of the ambient group acts on $H$, yielding a homomorphism $\operatorname{res} : S \to \operatorname{Aut}(H)$. The image of $\operatorname{res}$ on the inner automorphisms $\operatorname{Inn}(G) \cap S$ is the Weyl group $W = N_G(H) / Z_G(H)$.
$\operatorname{Aut}(G)$ | $C_2^6:C_7.A_4.C_2^2$ |
$\operatorname{Aut}(H)$ | $C_2^{12}.\GL(3,2)$, of order \(688128\)\(\medspace = 2^{15} \cdot 3 \cdot 7 \) |
$\operatorname{res}(S)$ | $C_2\times F_8:A_4$, of order \(1344\)\(\medspace = 2^{6} \cdot 3 \cdot 7 \) |
$\card{\operatorname{ker}(\operatorname{res})}$ | \(8\)\(\medspace = 2^{3} \) |
$W$ | $C_2\times F_8$, of order \(112\)\(\medspace = 2^{4} \cdot 7 \) |
Related subgroups
Centralizer: | $C_2^4$ | ||
Normalizer: | $C_2^5:F_8$ | ||
Complements: | $C_{14}$ $C_{14}$ | ||
Minimal over-subgroups: | $C_2^4:F_8$ | $C_2^5:D_4$ | |
Maximal under-subgroups: | $C_2^6$ | $C_2^3:D_4$ | $C_2^4:C_4$ |
Other information
Number of subgroups in this autjugacy class | $2$ |
Number of conjugacy classes in this autjugacy class | $2$ |
Möbius function | $1$ |
Projective image | $C_2^5:F_8$ |