Properties

Label 1792.1083486.28.j1
Order $ 2^{6} $
Index $ 2^{2} \cdot 7 $
Normal No

Downloads

Learn more

Subgroup ($H$) information

Description:$C_2^3:D_4$
Order: \(64\)\(\medspace = 2^{6} \)
Index: \(28\)\(\medspace = 2^{2} \cdot 7 \)
Exponent: \(4\)\(\medspace = 2^{2} \)
Generators: $eg^{3}, bce, cd, g^{2}$ Copy content Toggle raw display
Nilpotency class: $2$
Derived length: $2$

The subgroup is nonabelian, a $p$-group (hence nilpotent, solvable, supersolvable, monomial, elementary, and hyperelementary), metabelian, and rational.

Ambient group ($G$) information

Description: $C_2^5:F_8$
Order: \(1792\)\(\medspace = 2^{8} \cdot 7 \)
Exponent: \(28\)\(\medspace = 2^{2} \cdot 7 \)
Derived length:$2$

The ambient group is nonabelian, monomial (hence solvable), and metabelian.

Automorphism information

While the subgroup $H$ is not characteristic, the stabilizer $S$ of $H$ in the automorphism group $\operatorname{Aut}(G)$ of the ambient group acts on $H$, yielding a homomorphism $\operatorname{res} : S \to \operatorname{Aut}(H)$. The image of $\operatorname{res}$ on the inner automorphisms $\operatorname{Inn}(G) \cap S$ is the Weyl group $W = N_G(H) / Z_G(H)$.

$\operatorname{Aut}(G)$$C_2^6:C_7.A_4.C_2^2$
$\operatorname{Aut}(H)$ $C_2^9.S_4$, of order \(12288\)\(\medspace = 2^{12} \cdot 3 \)
$\operatorname{res}(S)$$C_2^2\wr C_3$, of order \(192\)\(\medspace = 2^{6} \cdot 3 \)
$\card{\operatorname{ker}(\operatorname{res})}$\(8\)\(\medspace = 2^{3} \)
$W$$C_2^4$, of order \(16\)\(\medspace = 2^{4} \)

Related subgroups

Centralizer:$C_2^4$
Normalizer:$C_2^5:D_4$
Normal closure:$C_2^3\wr C_2$
Core:$C_2^4$
Minimal over-subgroups:$C_2^3\wr C_2$$C_2^4:D_4$$C_2^3\wr C_2$
Maximal under-subgroups:$C_2^2\wr C_2$$C_2^2\times D_4$$C_2^3:C_4$$C_2^5$

Other information

Number of subgroups in this autjugacy class$14$
Number of conjugacy classes in this autjugacy class$2$
Möbius function$0$
Projective image$C_2^5:F_8$