Subgroup ($H$) information
| Description: | $C_3^3:S_3^2$ | 
| Order: | \(972\)\(\medspace = 2^{2} \cdot 3^{5} \) | 
| Index: | \(18\)\(\medspace = 2 \cdot 3^{2} \) | 
| Exponent: | \(6\)\(\medspace = 2 \cdot 3 \) | 
| Generators: | 
		
    $\langle(16,17,18), (1,2,8)(3,7,6)(4,9,5)(10,11,13)(12,15,14)(16,18,17), (10,13,11) \!\cdots\! \rangle$
    
    
    
         | 
| Derived length: | $3$ | 
The subgroup is characteristic (hence normal), a semidirect factor, nonabelian, and supersolvable (hence solvable and monomial).
Ambient group ($G$) information
| Description: | $C_3^4:S_3^3$ | 
| Order: | \(17496\)\(\medspace = 2^{3} \cdot 3^{7} \) | 
| Exponent: | \(18\)\(\medspace = 2 \cdot 3^{2} \) | 
| Derived length: | $3$ | 
The ambient group is nonabelian and supersolvable (hence solvable and monomial).
Quotient group ($Q$) structure
| Description: | $C_3\times S_3$ | 
| Order: | \(18\)\(\medspace = 2 \cdot 3^{2} \) | 
| Exponent: | \(6\)\(\medspace = 2 \cdot 3 \) | 
| Automorphism Group: | $D_6$, of order \(12\)\(\medspace = 2^{2} \cdot 3 \) | 
| Outer Automorphisms: | $C_2$, of order \(2\) | 
| Derived length: | $2$ | 
The quotient is nonabelian, metacyclic (hence solvable, supersolvable, monomial, and metabelian), and an A-group.
Automorphism information
Since the subgroup $H$ is characteristic, the automorphism group $\operatorname{Aut}(G)$ of the ambient group acts on $H$, yielding a homomorphism $\operatorname{res} : \operatorname{Aut}(G) \to \operatorname{Aut}(H)$. The image of $\operatorname{res}$ on the inner automorphism group $\operatorname{Inn}(G)$ is the Weyl group $W = G / Z_G(H)$.
| $\operatorname{Aut}(G)$ | $C_{17}^2:(C_2\times C_{24})$, of order \(139968\)\(\medspace = 2^{6} \cdot 3^{7} \) | 
| $\operatorname{Aut}(H)$ | $\AGL(2,3)^2$ | 
| $W$ | $C_3^2:S_3^3$, of order \(1944\)\(\medspace = 2^{3} \cdot 3^{5} \) | 
Related subgroups
Other information
| Number of conjugacy classes in this autjugacy class | $1$ | 
| Möbius function | $-3$ | 
| Projective image | $C_3^4:S_3^3$ |