Subgroup ($H$) information
| Description: | $C_3\times S_3$ |
| Order: | \(18\)\(\medspace = 2 \cdot 3^{2} \) |
| Index: | \(972\)\(\medspace = 2^{2} \cdot 3^{5} \) |
| Exponent: | \(6\)\(\medspace = 2 \cdot 3 \) |
| Generators: |
$\langle(2,5,7)(4,6,8)(10,11,13)(12,14,15), (2,7,5)(4,8,6), (2,8)(3,9)(4,7)(5,6)(16,17)\rangle$
|
| Derived length: | $2$ |
The subgroup is nonabelian, metacyclic (hence solvable, supersolvable, monomial, and metabelian), and an A-group.
Ambient group ($G$) information
| Description: | $C_3^4:S_3^3$ |
| Order: | \(17496\)\(\medspace = 2^{3} \cdot 3^{7} \) |
| Exponent: | \(18\)\(\medspace = 2 \cdot 3^{2} \) |
| Derived length: | $3$ |
The ambient group is nonabelian and supersolvable (hence solvable and monomial).
Automorphism information
While the subgroup $H$ is not characteristic, the stabilizer $S$ of $H$ in the automorphism group $\operatorname{Aut}(G)$ of the ambient group acts on $H$, yielding a homomorphism $\operatorname{res} : S \to \operatorname{Aut}(H)$. The image of $\operatorname{res}$ on the inner automorphisms $\operatorname{Inn}(G) \cap S$ is the Weyl group $W = N_G(H) / Z_G(H)$.
| $\operatorname{Aut}(G)$ | $C_{17}^2:(C_2\times C_{24})$, of order \(139968\)\(\medspace = 2^{6} \cdot 3^{7} \) |
| $\operatorname{Aut}(H)$ | $D_6$, of order \(12\)\(\medspace = 2^{2} \cdot 3 \) |
| $W$ | $S_3$, of order \(6\)\(\medspace = 2 \cdot 3 \) |
Related subgroups
Other information
| Number of subgroups in this autjugacy class | $162$ |
| Number of conjugacy classes in this autjugacy class | $6$ |
| Möbius function | $0$ |
| Projective image | $C_3^3:S_3^3$ |