Properties

Label 17496.ig.6.b1
Order $ 2^{2} \cdot 3^{6} $
Index $ 2 \cdot 3 $
Normal Yes

Downloads

Learn more

Subgroup ($H$) information

Description:$C_3^5:D_6$
Order: \(2916\)\(\medspace = 2^{2} \cdot 3^{6} \)
Index: \(6\)\(\medspace = 2 \cdot 3 \)
Exponent: \(18\)\(\medspace = 2 \cdot 3^{2} \)
Generators: $\langle(10,12)(11,14)(13,15)(16,18), (1,2,8)(3,7,6)(4,9,5)(10,11,13)(12,15,14) \!\cdots\! \rangle$ Copy content Toggle raw display
Derived length: $3$

The subgroup is characteristic (hence normal), a semidirect factor, nonabelian, and supersolvable (hence solvable and monomial).

Ambient group ($G$) information

Description: $C_3^4:S_3^3$
Order: \(17496\)\(\medspace = 2^{3} \cdot 3^{7} \)
Exponent: \(18\)\(\medspace = 2 \cdot 3^{2} \)
Derived length:$3$

The ambient group is nonabelian and supersolvable (hence solvable and monomial).

Quotient group ($Q$) structure

Description: $C_6$
Order: \(6\)\(\medspace = 2 \cdot 3 \)
Exponent: \(6\)\(\medspace = 2 \cdot 3 \)
Automorphism Group: $C_2$, of order \(2\)
Outer Automorphisms: $C_2$, of order \(2\)
Derived length: $1$

The quotient is cyclic (hence abelian, nilpotent, solvable, supersolvable, monomial, elementary ($p = 2,3$), hyperelementary, metacyclic, metabelian, a Z-group, and an A-group).

Automorphism information

Since the subgroup $H$ is characteristic, the automorphism group $\operatorname{Aut}(G)$ of the ambient group acts on $H$, yielding a homomorphism $\operatorname{res} : \operatorname{Aut}(G) \to \operatorname{Aut}(H)$. The image of $\operatorname{res}$ on the inner automorphism group $\operatorname{Inn}(G)$ is the Weyl group $W = G / Z_G(H)$.

$\operatorname{Aut}(G)$$C_{17}^2:(C_2\times C_{24})$, of order \(139968\)\(\medspace = 2^{6} \cdot 3^{7} \)
$\operatorname{Aut}(H)$ $C_3\times (C_3\times \PSU(3,2)).S_3^3$
$W$$C_3^2:S_3^3$, of order \(1944\)\(\medspace = 2^{3} \cdot 3^{5} \)

Related subgroups

Centralizer:$C_3^2$
Normalizer:$C_3^4:S_3^3$
Complements:$C_6$ $C_6$ $C_6$ $C_6$ $C_6$ $C_6$ $C_6$ $C_6$
Minimal over-subgroups:$C_3^4.C_3^3.C_2^2$$C_3^3:S_3^3$
Maximal under-subgroups:$C_3^5:C_6$$C_3^5:S_3$$C_3^5:S_3$$C_3^3:S_3^2$$C_3^3:S_3^2$$C_3^3:S_3^2$$C_3^3:C_6^2$

Other information

Number of conjugacy classes in this autjugacy class$1$
Möbius function$1$
Projective image$C_3^4:S_3^3$