Properties

Label 1728.47489.3.c1.a1
Order $ 2^{6} \cdot 3^{2} $
Index $ 3 $
Normal No

Downloads

Learn more

Subgroup ($H$) information

Description:$C_3\times Q_8:S_4$
Order: \(576\)\(\medspace = 2^{6} \cdot 3^{2} \)
Index: \(3\)
Exponent: \(24\)\(\medspace = 2^{3} \cdot 3 \)
Generators: $\langle(3,5)(4,6), (9,12,11)(10,14,13), (1,7,2,8)(3,4,5,6), (1,4,2,6)(3,8,5,7) \!\cdots\! \rangle$ Copy content Toggle raw display
Derived length: $4$

The subgroup is maximal, nonabelian, and monomial (hence solvable).

Ambient group ($G$) information

Description: $(Q_8\times C_3^2):S_4$
Order: \(1728\)\(\medspace = 2^{6} \cdot 3^{3} \)
Exponent: \(24\)\(\medspace = 2^{3} \cdot 3 \)
Derived length:$4$

The ambient group is nonabelian and monomial (hence solvable).

Automorphism information

While the subgroup $H$ is not characteristic, the stabilizer $S$ of $H$ in the automorphism group $\operatorname{Aut}(G)$ of the ambient group acts on $H$, yielding a homomorphism $\operatorname{res} : S \to \operatorname{Aut}(H)$. The image of $\operatorname{res}$ on the inner automorphisms $\operatorname{Inn}(G) \cap S$ is the Weyl group $W = N_G(H) / Z_G(H)$.

$\operatorname{Aut}(G)$$C_2\times C_2^4:\He_3.C_2^4$
$\operatorname{Aut}(H)$ $C_2^5:S_4$, of order \(768\)\(\medspace = 2^{8} \cdot 3 \)
$\operatorname{res}(S)$$C_2^5:S_4$, of order \(768\)\(\medspace = 2^{8} \cdot 3 \)
$\card{\operatorname{ker}(\operatorname{res})}$\(2\)
$W$$C_2^2:S_4$, of order \(96\)\(\medspace = 2^{5} \cdot 3 \)

Related subgroups

Centralizer:$C_6$
Normalizer:$C_3\times Q_8:S_4$
Normal closure:$(Q_8\times C_3^2):S_4$
Core:$C_3\times Q_8:A_4$
Minimal over-subgroups:$(Q_8\times C_3^2):S_4$
Maximal under-subgroups:$C_3\times Q_8:A_4$$C_3\times D_4:D_4$$Q_8:S_4$$C_6\times S_4$$C_3\times \GL(2,3)$$C_3\times \GL(2,3)$
Autjugate subgroups:1728.47489.3.c1.b11728.47489.3.c1.c1

Other information

Number of subgroups in this conjugacy class$3$
Möbius function$-1$
Projective image$(C_2\times C_6):S_4$