Properties

Label 1728.47489.9.c1.a1
Order $ 2^{6} \cdot 3 $
Index $ 3^{2} $
Normal No

Downloads

Learn more

Subgroup ($H$) information

Description:$Q_8:S_4$
Order: \(192\)\(\medspace = 2^{6} \cdot 3 \)
Index: \(9\)\(\medspace = 3^{2} \)
Exponent: \(24\)\(\medspace = 2^{3} \cdot 3 \)
Generators: $\langle(3,5)(4,6), (1,7,2,8)(3,4,5,6), (1,4,2,6)(3,8,5,7), (3,7,4)(5,8,6), (4,6)(7,8), (1,2)(3,5)(4,6)(7,8), (4,7,6,8)(9,14)(10,11)(12,13)\rangle$ Copy content Toggle raw display
Derived length: $4$

The subgroup is nonabelian, monomial (hence solvable), and rational.

Ambient group ($G$) information

Description: $(Q_8\times C_3^2):S_4$
Order: \(1728\)\(\medspace = 2^{6} \cdot 3^{3} \)
Exponent: \(24\)\(\medspace = 2^{3} \cdot 3 \)
Derived length:$4$

The ambient group is nonabelian and monomial (hence solvable).

Automorphism information

While the subgroup $H$ is not characteristic, the stabilizer $S$ of $H$ in the automorphism group $\operatorname{Aut}(G)$ of the ambient group acts on $H$, yielding a homomorphism $\operatorname{res} : S \to \operatorname{Aut}(H)$. The image of $\operatorname{res}$ on the inner automorphisms $\operatorname{Inn}(G) \cap S$ is the Weyl group $W = N_G(H) / Z_G(H)$.

$\operatorname{Aut}(G)$$C_2\times C_2^4:\He_3.C_2^4$
$\operatorname{Aut}(H)$ $C_2^4:S_4$, of order \(384\)\(\medspace = 2^{7} \cdot 3 \)
$\operatorname{res}(S)$$C_2^4:S_4$, of order \(384\)\(\medspace = 2^{7} \cdot 3 \)
$\card{\operatorname{ker}(\operatorname{res})}$\(4\)\(\medspace = 2^{2} \)
$W$$C_2^2:S_4$, of order \(96\)\(\medspace = 2^{5} \cdot 3 \)

Related subgroups

Centralizer:$C_6$
Normalizer:$C_3\times Q_8:S_4$
Normal closure:$(C_3\times Q_8):S_4$
Core:$Q_8:A_4$
Minimal over-subgroups:$(C_3\times Q_8):S_4$$C_3\times Q_8:S_4$
Maximal under-subgroups:$Q_8:A_4$$D_4:D_4$$C_2\times S_4$$\GL(2,3)$$\GL(2,3)$
Autjugate subgroups:1728.47489.9.c1.b11728.47489.9.c1.c1

Other information

Number of subgroups in this conjugacy class$3$
Möbius function$1$
Projective image$C_6^2:S_4$