Properties

Label 1728.47367.54.b1
Order $ 2^{5} $
Index $ 2 \cdot 3^{3} $
Normal No

Downloads

Learn more

Subgroup ($H$) information

Description:$C_2^3\times C_4$
Order: \(32\)\(\medspace = 2^{5} \)
Index: \(54\)\(\medspace = 2 \cdot 3^{3} \)
Exponent: \(4\)\(\medspace = 2^{2} \)
Generators: $ad, bd^{3}, c^{3}d^{3}e^{6}, e^{9}$ Copy content Toggle raw display
Nilpotency class: $1$
Derived length: $1$

The subgroup is abelian (hence nilpotent, solvable, supersolvable, monomial, metabelian, and an A-group) and a $p$-group (hence elementary and hyperelementary).

Ambient group ($G$) information

Description: $Q_8:S_3^3$
Order: \(1728\)\(\medspace = 2^{6} \cdot 3^{3} \)
Exponent: \(12\)\(\medspace = 2^{2} \cdot 3 \)
Derived length:$2$

The ambient group is nonabelian, supersolvable (hence solvable and monomial), and metabelian.

Automorphism information

While the subgroup $H$ is not characteristic, the stabilizer $S$ of $H$ in the automorphism group $\operatorname{Aut}(G)$ of the ambient group acts on $H$, yielding a homomorphism $\operatorname{res} : S \to \operatorname{Aut}(H)$. The image of $\operatorname{res}$ on the inner automorphisms $\operatorname{Inn}(G) \cap S$ is the Weyl group $W = N_G(H) / Z_G(H)$.

$\operatorname{Aut}(G)$$C_3^3.C_2^6.D_6^2$
$\operatorname{Aut}(H)$ $C_2^4:C_2^3:\GL(3,2)$, of order \(21504\)\(\medspace = 2^{10} \cdot 3 \cdot 7 \)
$\card{W}$\(2\)

Related subgroups

Centralizer:$C_2^3\times C_4$
Normalizer:$D_4:C_2^3$
Normal closure:$C_4\times S_3^3$
Core:$C_4$
Minimal over-subgroups:$C_{12}:C_2^3$$D_4:C_2^3$
Maximal under-subgroups:$C_2^2\times C_4$$C_2^2\times C_4$$C_2^2\times C_4$$C_2^2\times C_4$$C_2^4$$C_2^2\times C_4$$C_2^2\times C_4$

Other information

Number of subgroups in this autjugacy class$81$
Number of conjugacy classes in this autjugacy class$3$
Möbius function not computed
Projective image not computed