Properties

Label 1728.47367.27.a1
Order $ 2^{6} $
Index $ 3^{3} $
Normal No

Downloads

Learn more

Subgroup ($H$) information

Description:$D_4:C_2^3$
Order: \(64\)\(\medspace = 2^{6} \)
Index: \(27\)\(\medspace = 3^{3} \)
Exponent: \(4\)\(\medspace = 2^{2} \)
Generators: $a, b, c^{3}e^{6}, e^{9}, d^{3}$ Copy content Toggle raw display
Nilpotency class: $2$
Derived length: $2$

The subgroup is nonabelian, a $2$-Sylow subgroup (hence nilpotent, solvable, supersolvable, a Hall subgroup, and monomial), a $p$-group (hence elementary and hyperelementary), and metabelian.

Ambient group ($G$) information

Description: $Q_8:S_3^3$
Order: \(1728\)\(\medspace = 2^{6} \cdot 3^{3} \)
Exponent: \(12\)\(\medspace = 2^{2} \cdot 3 \)
Derived length:$2$

The ambient group is nonabelian, supersolvable (hence solvable and monomial), and metabelian.

Automorphism information

While the subgroup $H$ is not characteristic, the stabilizer $S$ of $H$ in the automorphism group $\operatorname{Aut}(G)$ of the ambient group acts on $H$, yielding a homomorphism $\operatorname{res} : S \to \operatorname{Aut}(H)$. The image of $\operatorname{res}$ on the inner automorphisms $\operatorname{Inn}(G) \cap S$ is the Weyl group $W = N_G(H) / Z_G(H)$.

$\operatorname{Aut}(G)$$C_3^3.C_2^6.D_6^2$
$\operatorname{Aut}(H)$ $C_2^9.(S_3\times S_4)$, of order \(73728\)\(\medspace = 2^{13} \cdot 3^{2} \)
$\card{W}$\(4\)\(\medspace = 2^{2} \)

Related subgroups

Centralizer:$C_2^2\times C_4$
Normalizer:$D_4:C_2^3$
Normal closure:$Q_8:S_3^3$
Core:$Q_8$
Minimal over-subgroups:$D_{12}:C_2^3$
Maximal under-subgroups:$D_4:C_2^2$$C_2^3\times C_4$$D_4:C_2^2$$D_4:C_2^2$$D_4:C_2^2$$C_2^2\times D_4$$C_2^2\times Q_8$

Other information

Number of subgroups in this autjugacy class$27$
Number of conjugacy classes in this autjugacy class$1$
Möbius function not computed
Projective image not computed