Properties

Label 1728.46264.9.a1.a1
Order $ 2^{6} \cdot 3 $
Index $ 3^{2} $
Normal No

Downloads

Learn more

Subgroup ($H$) information

Description:$C_8:S_4$
Order: \(192\)\(\medspace = 2^{6} \cdot 3 \)
Index: \(9\)\(\medspace = 3^{2} \)
Exponent: \(24\)\(\medspace = 2^{3} \cdot 3 \)
Generators: $a, c^{3}, b^{8}, b^{3}, d^{3}, b^{18}, b^{12}$ Copy content Toggle raw display
Derived length: $3$

The subgroup is maximal, nonabelian, and monomial (hence solvable).

Ambient group ($G$) information

Description: $C_6^2:D_{24}$
Order: \(1728\)\(\medspace = 2^{6} \cdot 3^{3} \)
Exponent: \(24\)\(\medspace = 2^{3} \cdot 3 \)
Derived length:$3$

The ambient group is nonabelian and monomial (hence solvable).

Automorphism information

While the subgroup $H$ is not characteristic, the stabilizer $S$ of $H$ in the automorphism group $\operatorname{Aut}(G)$ of the ambient group acts on $H$, yielding a homomorphism $\operatorname{res} : S \to \operatorname{Aut}(H)$. The image of $\operatorname{res}$ on the inner automorphisms $\operatorname{Inn}(G) \cap S$ is the Weyl group $W = N_G(H) / Z_G(H)$.

$\operatorname{Aut}(G)$$(A_4\times C_3:S_3).C_2^5.C_2$
$\operatorname{Aut}(H)$ $D_8:C_2\times S_4$, of order \(768\)\(\medspace = 2^{8} \cdot 3 \)
$\operatorname{res}(S)$$D_8:C_2\times S_4$, of order \(768\)\(\medspace = 2^{8} \cdot 3 \)
$\card{\operatorname{ker}(\operatorname{res})}$\(2\)
$W$$C_4:S_4$, of order \(96\)\(\medspace = 2^{5} \cdot 3 \)

Related subgroups

Centralizer:$C_2$
Normalizer:$C_8:S_4$
Normal closure:$C_6^2:D_{24}$
Core:$C_2\times A_4$
Minimal over-subgroups:$C_6^2:D_{24}$
Maximal under-subgroups:$C_4:S_4$$C_4:S_4$$C_8\times A_4$$C_8:D_4$$D_{24}$

Other information

Number of subgroups in this conjugacy class$9$
Möbius function$-1$
Projective image$C_6^2:D_{12}$