Subgroup ($H$) information
| Description: | $C_2$ | 
| Order: | \(2\) | 
| Index: | \(864\)\(\medspace = 2^{5} \cdot 3^{3} \) | 
| Exponent: | \(2\) | 
| Generators: | $b^{12}$ | 
| Nilpotency class: | $1$ | 
| Derived length: | $1$ | 
The subgroup is the center (hence characteristic, normal, abelian, central, nilpotent, solvable, supersolvable, monomial, metabelian, and an A-group), the Frattini subgroup, cyclic (hence elementary, hyperelementary, metacyclic, and a Z-group), stem, a $p$-group, simple, and rational.
Ambient group ($G$) information
| Description: | $C_6^2:D_{24}$ | 
| Order: | \(1728\)\(\medspace = 2^{6} \cdot 3^{3} \) | 
| Exponent: | \(24\)\(\medspace = 2^{3} \cdot 3 \) | 
| Derived length: | $3$ | 
The ambient group is nonabelian and monomial (hence solvable).
Quotient group ($Q$) structure
| Description: | $C_6^2:D_{12}$ | 
| Order: | \(864\)\(\medspace = 2^{5} \cdot 3^{3} \) | 
| Exponent: | \(12\)\(\medspace = 2^{2} \cdot 3 \) | 
| Automorphism Group: | $F_9:C_2\times S_4$, of order \(3456\)\(\medspace = 2^{7} \cdot 3^{3} \) | 
| Outer Automorphisms: | $C_2^2$, of order \(4\)\(\medspace = 2^{2} \) | 
| Nilpotency class: | $-1$ | 
| Derived length: | $3$ | 
The quotient is nonabelian and monomial (hence solvable).
Automorphism information
Since the subgroup $H$ is characteristic, the automorphism group $\operatorname{Aut}(G)$ of the ambient group acts on $H$, yielding a homomorphism $\operatorname{res} : \operatorname{Aut}(G) \to \operatorname{Aut}(H)$. The image of $\operatorname{res}$ on the inner automorphism group $\operatorname{Inn}(G)$ is the Weyl group $W = G / Z_G(H)$.
| $\operatorname{Aut}(G)$ | $(A_4\times C_3:S_3).C_2^5.C_2$ | 
| $\operatorname{Aut}(H)$ | $C_1$, of order $1$ | 
| $\operatorname{res}(\operatorname{Aut}(G))$ | $C_1$, of order $1$ | 
| $\card{\operatorname{ker}(\operatorname{res})}$ | \(13824\)\(\medspace = 2^{9} \cdot 3^{3} \) | 
| $W$ | $C_1$, of order $1$ | 
Related subgroups
| Centralizer: | $C_6^2:D_{24}$ | |||||||||
| Normalizer: | $C_6^2:D_{24}$ | |||||||||
| Minimal over-subgroups: | $C_6$ | $C_6$ | $C_6$ | $C_6$ | $C_6$ | $C_2^2$ | $C_2^2$ | $C_2^2$ | $C_4$ | $C_4$ | 
| Maximal under-subgroups: | $C_1$ | 
Other information
| Möbius function | $0$ | 
| Projective image | $C_6^2:D_{12}$ | 
