Properties

Label 1728.46260.9.a1.a1
Order $ 2^{6} \cdot 3 $
Index $ 3^{2} $
Normal No

Downloads

Learn more

Subgroup ($H$) information

Description:$Q_8.D_{12}$
Order: \(192\)\(\medspace = 2^{6} \cdot 3 \)
Index: \(9\)\(\medspace = 3^{2} \)
Exponent: \(24\)\(\medspace = 2^{3} \cdot 3 \)
Generators: $a, d^{9}, c^{3}, b^{3}, d^{6}, b^{6}, b^{4}$ Copy content Toggle raw display
Derived length: $4$

The subgroup is maximal, nonabelian, and solvable.

Ambient group ($G$) information

Description: $\SL(2,3).\SOPlus(4,2)$
Order: \(1728\)\(\medspace = 2^{6} \cdot 3^{3} \)
Exponent: \(24\)\(\medspace = 2^{3} \cdot 3 \)
Derived length:$4$

The ambient group is nonabelian and solvable.

Automorphism information

While the subgroup $H$ is not characteristic, the stabilizer $S$ of $H$ in the automorphism group $\operatorname{Aut}(G)$ of the ambient group acts on $H$, yielding a homomorphism $\operatorname{res} : S \to \operatorname{Aut}(H)$. The image of $\operatorname{res}$ on the inner automorphisms $\operatorname{Inn}(G) \cap S$ is the Weyl group $W = N_G(H) / Z_G(H)$.

$\operatorname{Aut}(G)$$C_6^2.(C_6\times D_4).C_2^3$
$\operatorname{Aut}(H)$ $C_2^6:D_6$, of order \(768\)\(\medspace = 2^{8} \cdot 3 \)
$\operatorname{res}(S)$$C_2^6:D_6$, of order \(768\)\(\medspace = 2^{8} \cdot 3 \)
$\card{\operatorname{ker}(\operatorname{res})}$\(2\)
$W$$C_2\times S_4$, of order \(48\)\(\medspace = 2^{4} \cdot 3 \)

Related subgroups

Centralizer:$C_2^2$
Normalizer:$Q_8.D_{12}$
Normal closure:$\SL(2,3).\SOPlus(4,2)$
Core:$\SL(2,3)$
Minimal over-subgroups:$\SL(2,3).\SOPlus(4,2)$
Maximal under-subgroups:$C_4\times \SL(2,3)$$C_2^2.S_4$$C_2^2.S_4$$C_4:Q_{16}$$C_{12}:C_4$

Other information

Number of subgroups in this conjugacy class$9$
Möbius function$-1$
Projective image$C_6^2:D_{12}$