Subgroup ($H$) information
| Description: | $Q_8.D_{12}$ |
| Order: | \(192\)\(\medspace = 2^{6} \cdot 3 \) |
| Index: | \(9\)\(\medspace = 3^{2} \) |
| Exponent: | \(24\)\(\medspace = 2^{3} \cdot 3 \) |
| Generators: |
$a, d^{9}, c^{3}, b^{3}, d^{6}, b^{6}, b^{4}$
|
| Derived length: | $4$ |
The subgroup is maximal, nonabelian, and solvable.
Ambient group ($G$) information
| Description: | $\SL(2,3).\SOPlus(4,2)$ |
| Order: | \(1728\)\(\medspace = 2^{6} \cdot 3^{3} \) |
| Exponent: | \(24\)\(\medspace = 2^{3} \cdot 3 \) |
| Derived length: | $4$ |
The ambient group is nonabelian and solvable.
Automorphism information
While the subgroup $H$ is not characteristic, the stabilizer $S$ of $H$ in the automorphism group $\operatorname{Aut}(G)$ of the ambient group acts on $H$, yielding a homomorphism $\operatorname{res} : S \to \operatorname{Aut}(H)$. The image of $\operatorname{res}$ on the inner automorphisms $\operatorname{Inn}(G) \cap S$ is the Weyl group $W = N_G(H) / Z_G(H)$.
| $\operatorname{Aut}(G)$ | $C_6^2.(C_6\times D_4).C_2^3$ |
| $\operatorname{Aut}(H)$ | $C_2^6:D_6$, of order \(768\)\(\medspace = 2^{8} \cdot 3 \) |
| $\operatorname{res}(S)$ | $C_2^6:D_6$, of order \(768\)\(\medspace = 2^{8} \cdot 3 \) |
| $\card{\operatorname{ker}(\operatorname{res})}$ | \(2\) |
| $W$ | $C_2\times S_4$, of order \(48\)\(\medspace = 2^{4} \cdot 3 \) |
Related subgroups
Other information
| Number of subgroups in this conjugacy class | $9$ |
| Möbius function | $-1$ |
| Projective image | $C_6^2:D_{12}$ |