Properties

Label 1728.46260.18.a1.a1
Order $ 2^{5} \cdot 3 $
Index $ 2 \cdot 3^{2} $
Normal No

Downloads

Learn more

Subgroup ($H$) information

Description:$C_4\times \SL(2,3)$
Order: \(96\)\(\medspace = 2^{5} \cdot 3 \)
Index: \(18\)\(\medspace = 2 \cdot 3^{2} \)
Exponent: \(12\)\(\medspace = 2^{2} \cdot 3 \)
Generators: $b^{3}, d^{6}, d^{9}, b^{4}, b^{6}, c^{3}d^{9}$ Copy content Toggle raw display
Derived length: $3$

The subgroup is nonabelian and solvable.

Ambient group ($G$) information

Description: $\SL(2,3).\SOPlus(4,2)$
Order: \(1728\)\(\medspace = 2^{6} \cdot 3^{3} \)
Exponent: \(24\)\(\medspace = 2^{3} \cdot 3 \)
Derived length:$4$

The ambient group is nonabelian and solvable.

Automorphism information

While the subgroup $H$ is not characteristic, the stabilizer $S$ of $H$ in the automorphism group $\operatorname{Aut}(G)$ of the ambient group acts on $H$, yielding a homomorphism $\operatorname{res} : S \to \operatorname{Aut}(H)$. The image of $\operatorname{res}$ on the inner automorphisms $\operatorname{Inn}(G) \cap S$ is the Weyl group $W = N_G(H) / Z_G(H)$.

$\operatorname{Aut}(G)$$C_6^2.(C_6\times D_4).C_2^3$
$\operatorname{Aut}(H)$ $C_2^2\times S_4$, of order \(96\)\(\medspace = 2^{5} \cdot 3 \)
$\operatorname{res}(S)$$C_2^2\times S_4$, of order \(96\)\(\medspace = 2^{5} \cdot 3 \)
$\card{\operatorname{ker}(\operatorname{res})}$\(16\)\(\medspace = 2^{4} \)
$W$$S_4$, of order \(24\)\(\medspace = 2^{3} \cdot 3 \)

Related subgroups

Centralizer:$C_2\times C_4$
Normalizer:$Q_8.D_{12}$
Normal closure:$C_3^2:C_4\times \SL(2,3)$
Core:$\SL(2,3)$
Minimal over-subgroups:$C_3^2:C_4\times \SL(2,3)$$Q_8.D_{12}$
Maximal under-subgroups:$C_2\times \SL(2,3)$$C_4\times Q_8$$C_2\times C_{12}$

Other information

Number of subgroups in this conjugacy class$9$
Möbius function$1$
Projective image$C_6^2:D_{12}$