Properties

Label 1728.187.3.a1.d1
Order $ 2^{6} \cdot 3^{2} $
Index $ 3 $
Normal Yes

Downloads

Learn more

Subgroup ($H$) information

Description:$C_3\times C_{192}$
Order: \(576\)\(\medspace = 2^{6} \cdot 3^{2} \)
Index: \(3\)
Exponent: \(192\)\(\medspace = 2^{6} \cdot 3 \)
Generators: $c^{3}, c^{12}, c^{24}, ab^{2}, c^{6}, c^{96}, c^{48}, c^{64}$ Copy content Toggle raw display
Nilpotency class: $1$
Derived length: $1$

The subgroup is normal, maximal, a semidirect factor, abelian (hence nilpotent, solvable, supersolvable, monomial, metabelian, and an A-group), elementary for $p = 3$ (hence hyperelementary), and metacyclic.

Ambient group ($G$) information

Description: $\He_3\times C_{64}$
Order: \(1728\)\(\medspace = 2^{6} \cdot 3^{3} \)
Exponent: \(192\)\(\medspace = 2^{6} \cdot 3 \)
Nilpotency class:$2$
Derived length:$2$

The ambient group is nonabelian, elementary for $p = 3$ (hence nilpotent, solvable, supersolvable, monomial, and hyperelementary), and metabelian.

Quotient group ($Q$) structure

Description: $C_3$
Order: \(3\)
Exponent: \(3\)
Automorphism Group: $C_2$, of order \(2\)
Outer Automorphisms: $C_2$, of order \(2\)
Nilpotency class: $1$
Derived length: $1$

The quotient is cyclic (hence abelian, nilpotent, solvable, supersolvable, monomial, elementary, hyperelementary, metacyclic, metabelian, a Z-group, and an A-group), a $p$-group, and simple.

Automorphism information

While the subgroup $H$ is not characteristic, the stabilizer $S$ of $H$ in the automorphism group $\operatorname{Aut}(G)$ of the ambient group acts on $H$, yielding a homomorphism $\operatorname{res} : S \to \operatorname{Aut}(H)$. The image of $\operatorname{res}$ on the inner automorphisms $\operatorname{Inn}(G) \cap S$ is the Weyl group $W = N_G(H) / Z_G(H)$.

$\operatorname{Aut}(G)$$\ASL(2,3).C_8.C_2^3$
$\operatorname{Aut}(H)$ $C_2\times C_{16}\times \GL(2,3)$, of order \(1536\)\(\medspace = 2^{9} \cdot 3 \)
$\operatorname{res}(S)$$C_{48}:C_2^3$, of order \(384\)\(\medspace = 2^{7} \cdot 3 \)
$\card{\operatorname{ker}(\operatorname{res})}$\(9\)\(\medspace = 3^{2} \)
$W$$C_3$, of order \(3\)

Related subgroups

Centralizer:$C_3\times C_{192}$
Normalizer:$\He_3\times C_{64}$
Complements:$C_3$ $C_3$ $C_3$
Minimal over-subgroups:$\He_3\times C_{64}$
Maximal under-subgroups:$C_3\times C_{96}$$C_{192}$$C_{192}$
Autjugate subgroups:1728.187.3.a1.a11728.187.3.a1.b11728.187.3.a1.c1

Other information

Möbius function$-1$
Projective image$C_3^2$