Subgroup ($H$) information
| Description: | $C_{12}.C_2^4$ |
| Order: | \(192\)\(\medspace = 2^{6} \cdot 3 \) |
| Index: | \(9\)\(\medspace = 3^{2} \) |
| Exponent: | \(24\)\(\medspace = 2^{3} \cdot 3 \) |
| Generators: |
$a^{3}, d^{54}, d^{24}, bd^{18}, d^{36}, cd^{18}, d^{9}$
|
| Nilpotency class: | $3$ |
| Derived length: | $2$ |
The subgroup is characteristic (hence normal), nonabelian, elementary for $p = 2$ (hence nilpotent, solvable, supersolvable, monomial, and hyperelementary), and metabelian.
Ambient group ($G$) information
| Description: | $C_9\times Q_{16}.A_4$ |
| Order: | \(1728\)\(\medspace = 2^{6} \cdot 3^{3} \) |
| Exponent: | \(72\)\(\medspace = 2^{3} \cdot 3^{2} \) |
| Derived length: | $3$ |
The ambient group is nonabelian and solvable.
Quotient group ($Q$) structure
| Description: | $C_3^2$ |
| Order: | \(9\)\(\medspace = 3^{2} \) |
| Exponent: | \(3\) |
| Automorphism Group: | $\GL(2,3)$, of order \(48\)\(\medspace = 2^{4} \cdot 3 \) |
| Outer Automorphisms: | $\GL(2,3)$, of order \(48\)\(\medspace = 2^{4} \cdot 3 \) |
| Nilpotency class: | $1$ |
| Derived length: | $1$ |
The quotient is abelian (hence nilpotent, solvable, supersolvable, monomial, metabelian, and an A-group), a $p$-group (hence elementary and hyperelementary), and metacyclic.
Automorphism information
Since the subgroup $H$ is characteristic, the automorphism group $\operatorname{Aut}(G)$ of the ambient group acts on $H$, yielding a homomorphism $\operatorname{res} : \operatorname{Aut}(G) \to \operatorname{Aut}(H)$. The image of $\operatorname{res}$ on the inner automorphism group $\operatorname{Inn}(G)$ is the Weyl group $W = G / Z_G(H)$.
| $\operatorname{Aut}(G)$ | $(C_{12}\times A_4).C_6.C_2^4$ |
| $\operatorname{Aut}(H)$ | $C_8:C_2^3\times S_4$, of order \(1536\)\(\medspace = 2^{9} \cdot 3 \) |
| $\operatorname{res}(\operatorname{Aut}(G))$ | $C_8:C_2^3\times S_4$, of order \(1536\)\(\medspace = 2^{9} \cdot 3 \) |
| $\card{\operatorname{ker}(\operatorname{res})}$ | \(9\)\(\medspace = 3^{2} \) |
| $W$ | $D_4\times A_4$, of order \(96\)\(\medspace = 2^{5} \cdot 3 \) |
Related subgroups
Other information
| Möbius function | $3$ |
| Projective image | $C_2^3.C_6^2$ |