Properties

Label 1728.18214.18.e1.a1
Order $ 2^{5} \cdot 3 $
Index $ 2 \cdot 3^{2} $
Normal No

Downloads

Learn more

Subgroup ($H$) information

Description:$D_8:C_6$
Order: \(96\)\(\medspace = 2^{5} \cdot 3 \)
Index: \(18\)\(\medspace = 2 \cdot 3^{2} \)
Exponent: \(24\)\(\medspace = 2^{3} \cdot 3 \)
Generators: $a^{3}, d^{36}, d^{54}, bd^{18}, d^{9}, d^{24}$ Copy content Toggle raw display
Nilpotency class: $3$
Derived length: $2$

The subgroup is nonabelian, elementary for $p = 2$ (hence nilpotent, solvable, supersolvable, monomial, and hyperelementary), and metabelian.

Ambient group ($G$) information

Description: $C_9\times Q_{16}.A_4$
Order: \(1728\)\(\medspace = 2^{6} \cdot 3^{3} \)
Exponent: \(72\)\(\medspace = 2^{3} \cdot 3^{2} \)
Derived length:$3$

The ambient group is nonabelian and solvable.

Automorphism information

While the subgroup $H$ is not characteristic, the stabilizer $S$ of $H$ in the automorphism group $\operatorname{Aut}(G)$ of the ambient group acts on $H$, yielding a homomorphism $\operatorname{res} : S \to \operatorname{Aut}(H)$. The image of $\operatorname{res}$ on the inner automorphisms $\operatorname{Inn}(G) \cap S$ is the Weyl group $W = N_G(H) / Z_G(H)$.

$\operatorname{Aut}(G)$$(C_{12}\times A_4).C_6.C_2^4$
$\operatorname{Aut}(H)$ $C_8:C_2^4$, of order \(128\)\(\medspace = 2^{7} \)
$\operatorname{res}(S)$$C_8:C_2^4$, of order \(128\)\(\medspace = 2^{7} \)
$\card{\operatorname{ker}(\operatorname{res})}$\(36\)\(\medspace = 2^{2} \cdot 3^{2} \)
$W$$C_2\times D_4$, of order \(16\)\(\medspace = 2^{4} \)

Related subgroups

Centralizer:$C_{36}$
Normalizer:$C_{72}.C_2^3$
Normal closure:$C_{12}.C_2^4$
Core:$C_3\times Q_{16}$
Minimal over-subgroups:$D_8:C_{18}$$C_{12}.C_2^4$
Maximal under-subgroups:$C_3\times Q_{16}$$D_4:C_6$$D_4:C_6$$C_2\times C_{24}$$C_3\times \SD_{16}$$C_3\times \SD_{16}$$C_3\times D_8$$D_8:C_2$

Other information

Number of subgroups in this conjugacy class$3$
Möbius function$0$
Projective image$C_2^3.C_6^2$