Subgroup ($H$) information
| Description: | $C_{72}.C_2^3$ | 
| Order: | \(576\)\(\medspace = 2^{6} \cdot 3^{2} \) | 
| Index: | \(3\) | 
| Exponent: | \(72\)\(\medspace = 2^{3} \cdot 3^{2} \) | 
| Generators: | $a^{3}, d^{8}, d^{54}, bd^{18}, d^{9}, d^{36}, d^{24}, cd^{18}$ | 
| Nilpotency class: | $3$ | 
| Derived length: | $2$ | 
The subgroup is the Fitting subgroup (hence characteristic, normal, nilpotent, solvable, supersolvable, and monomial), maximal, a semidirect factor, nonabelian, elementary for $p = 2$ (hence hyperelementary), and metabelian.
Ambient group ($G$) information
| Description: | $C_9\times Q_{16}.A_4$ | 
| Order: | \(1728\)\(\medspace = 2^{6} \cdot 3^{3} \) | 
| Exponent: | \(72\)\(\medspace = 2^{3} \cdot 3^{2} \) | 
| Derived length: | $3$ | 
The ambient group is nonabelian and solvable.
Quotient group ($Q$) structure
| Description: | $C_3$ | 
| Order: | \(3\) | 
| Exponent: | \(3\) | 
| Automorphism Group: | $C_2$, of order \(2\) | 
| Outer Automorphisms: | $C_2$, of order \(2\) | 
| Nilpotency class: | $1$ | 
| Derived length: | $1$ | 
The quotient is cyclic (hence abelian, nilpotent, solvable, supersolvable, monomial, elementary, hyperelementary, metacyclic, metabelian, a Z-group, and an A-group), a $p$-group, and simple.
Automorphism information
Since the subgroup $H$ is characteristic, the automorphism group $\operatorname{Aut}(G)$ of the ambient group acts on $H$, yielding a homomorphism $\operatorname{res} : \operatorname{Aut}(G) \to \operatorname{Aut}(H)$. The image of $\operatorname{res}$ on the inner automorphism group $\operatorname{Inn}(G)$ is the Weyl group $W = G / Z_G(H)$.
| $\operatorname{Aut}(G)$ | $(C_{12}\times A_4).C_6.C_2^4$ | 
| $\operatorname{Aut}(H)$ | $(C_{12}\times A_4).C_2^5$ | 
| $\card{\operatorname{res}(\operatorname{Aut}(G))}$ | \(4608\)\(\medspace = 2^{9} \cdot 3^{2} \) | 
| $\card{\operatorname{ker}(\operatorname{res})}$ | \(3\) | 
| $W$ | $D_4\times A_4$, of order \(96\)\(\medspace = 2^{5} \cdot 3 \) | 
Related subgroups
Other information
| Möbius function | $-1$ | 
| Projective image | $D_4\times A_4$ | 
