Properties

Label 1728.18214.3.b1.a1
Order $ 2^{6} \cdot 3^{2} $
Index $ 3 $
Normal Yes

Downloads

Learn more

Subgroup ($H$) information

Description:$C_{72}.C_2^3$
Order: \(576\)\(\medspace = 2^{6} \cdot 3^{2} \)
Index: \(3\)
Exponent: \(72\)\(\medspace = 2^{3} \cdot 3^{2} \)
Generators: $a^{3}, d^{8}, d^{54}, bd^{18}, d^{9}, d^{36}, d^{24}, cd^{18}$ Copy content Toggle raw display
Nilpotency class: $3$
Derived length: $2$

The subgroup is the Fitting subgroup (hence characteristic, normal, nilpotent, solvable, supersolvable, and monomial), maximal, a semidirect factor, nonabelian, elementary for $p = 2$ (hence hyperelementary), and metabelian.

Ambient group ($G$) information

Description: $C_9\times Q_{16}.A_4$
Order: \(1728\)\(\medspace = 2^{6} \cdot 3^{3} \)
Exponent: \(72\)\(\medspace = 2^{3} \cdot 3^{2} \)
Derived length:$3$

The ambient group is nonabelian and solvable.

Quotient group ($Q$) structure

Description: $C_3$
Order: \(3\)
Exponent: \(3\)
Automorphism Group: $C_2$, of order \(2\)
Outer Automorphisms: $C_2$, of order \(2\)
Nilpotency class: $1$
Derived length: $1$

The quotient is cyclic (hence abelian, nilpotent, solvable, supersolvable, monomial, elementary, hyperelementary, metacyclic, metabelian, a Z-group, and an A-group), a $p$-group, and simple.

Automorphism information

Since the subgroup $H$ is characteristic, the automorphism group $\operatorname{Aut}(G)$ of the ambient group acts on $H$, yielding a homomorphism $\operatorname{res} : \operatorname{Aut}(G) \to \operatorname{Aut}(H)$. The image of $\operatorname{res}$ on the inner automorphism group $\operatorname{Inn}(G)$ is the Weyl group $W = G / Z_G(H)$.

$\operatorname{Aut}(G)$$(C_{12}\times A_4).C_6.C_2^4$
$\operatorname{Aut}(H)$ $(C_{12}\times A_4).C_2^5$
$\card{\operatorname{res}(\operatorname{Aut}(G))}$\(4608\)\(\medspace = 2^{9} \cdot 3^{2} \)
$\card{\operatorname{ker}(\operatorname{res})}$\(3\)
$W$$D_4\times A_4$, of order \(96\)\(\medspace = 2^{5} \cdot 3 \)

Related subgroups

Centralizer:$C_{18}$
Normalizer:$C_9\times Q_{16}.A_4$
Complements:$C_3$ $C_3$ $C_3$
Minimal over-subgroups:$C_9\times Q_{16}.A_4$
Maximal under-subgroups:$C_{36}.C_2^3$$C_{36}.C_2^3$$\OD_{16}:C_{18}$$D_8:C_{18}$$D_8:C_{18}$$D_8:C_{18}$$D_8\times C_{18}$$C_{12}.C_2^4$

Other information

Möbius function$-1$
Projective image$D_4\times A_4$