Subgroup ($H$) information
Description: | $C_{23}$ |
Order: | \(23\) |
Index: | \(74\)\(\medspace = 2 \cdot 37 \) |
Exponent: | \(23\) |
Generators: |
$b^{185}$
|
Nilpotency class: | $1$ |
Derived length: | $1$ |
The subgroup is the commutator subgroup (hence characteristic and normal), a semidirect factor, cyclic (hence abelian, nilpotent, solvable, supersolvable, monomial, elementary, hyperelementary, metacyclic, metabelian, a Z-group, and an A-group), a $23$-Sylow subgroup (hence a Hall subgroup), a $p$-group, and simple.
Ambient group ($G$) information
Description: | $C_{37}\times D_{23}$ |
Order: | \(1702\)\(\medspace = 2 \cdot 23 \cdot 37 \) |
Exponent: | \(1702\)\(\medspace = 2 \cdot 23 \cdot 37 \) |
Derived length: | $2$ |
The ambient group is nonabelian, a Z-group (hence solvable, supersolvable, monomial, metacyclic, metabelian, and an A-group), and hyperelementary for $p = 2$.
Quotient group ($Q$) structure
Description: | $C_{74}$ |
Order: | \(74\)\(\medspace = 2 \cdot 37 \) |
Exponent: | \(74\)\(\medspace = 2 \cdot 37 \) |
Automorphism Group: | $C_{36}$, of order \(36\)\(\medspace = 2^{2} \cdot 3^{2} \) |
Outer Automorphisms: | $C_{36}$, of order \(36\)\(\medspace = 2^{2} \cdot 3^{2} \) |
Nilpotency class: | $1$ |
Derived length: | $1$ |
The quotient is cyclic (hence abelian, nilpotent, solvable, supersolvable, monomial, elementary ($p = 2,37$), hyperelementary, metacyclic, metabelian, a Z-group, and an A-group).
Automorphism information
Since the subgroup $H$ is characteristic, the automorphism group $\operatorname{Aut}(G)$ of the ambient group acts on $H$, yielding a homomorphism $\operatorname{res} : \operatorname{Aut}(G) \to \operatorname{Aut}(H)$. The image of $\operatorname{res}$ on the inner automorphism group $\operatorname{Inn}(G)$ is the Weyl group $W = G / Z_G(H)$.
$\operatorname{Aut}(G)$ | $C_{23}:(C_2\times C_{396})$ |
$\operatorname{Aut}(H)$ | $C_{22}$, of order \(22\)\(\medspace = 2 \cdot 11 \) |
$\operatorname{res}(\operatorname{Aut}(G))$ | $C_{22}$, of order \(22\)\(\medspace = 2 \cdot 11 \) |
$\card{\operatorname{ker}(\operatorname{res})}$ | \(828\)\(\medspace = 2^{2} \cdot 3^{2} \cdot 23 \) |
$W$ | $C_2$, of order \(2\) |
Related subgroups
Centralizer: | $C_{851}$ | |
Normalizer: | $C_{37}\times D_{23}$ | |
Complements: | $C_{74}$ | |
Minimal over-subgroups: | $C_{851}$ | $D_{23}$ |
Maximal under-subgroups: | $C_1$ |
Other information
Möbius function | $1$ |
Projective image | $C_{37}\times D_{23}$ |