Subgroup ($H$) information
| Description: | $C_{74}$ |
| Order: | \(74\)\(\medspace = 2 \cdot 37 \) |
| Index: | \(23\) |
| Exponent: | \(74\)\(\medspace = 2 \cdot 37 \) |
| Generators: |
$a, b^{23}$
|
| Nilpotency class: | $1$ |
| Derived length: | $1$ |
The subgroup is maximal, cyclic (hence abelian, nilpotent, solvable, supersolvable, monomial, elementary ($p = 2,37$), hyperelementary, metacyclic, metabelian, a Z-group, and an A-group), and a Hall subgroup.
Ambient group ($G$) information
| Description: | $C_{37}\times D_{23}$ |
| Order: | \(1702\)\(\medspace = 2 \cdot 23 \cdot 37 \) |
| Exponent: | \(1702\)\(\medspace = 2 \cdot 23 \cdot 37 \) |
| Derived length: | $2$ |
The ambient group is nonabelian, a Z-group (hence solvable, supersolvable, monomial, metacyclic, metabelian, and an A-group), and hyperelementary for $p = 2$.
Automorphism information
While the subgroup $H$ is not characteristic, the stabilizer $S$ of $H$ in the automorphism group $\operatorname{Aut}(G)$ of the ambient group acts on $H$, yielding a homomorphism $\operatorname{res} : S \to \operatorname{Aut}(H)$. The image of $\operatorname{res}$ on the inner automorphisms $\operatorname{Inn}(G) \cap S$ is the Weyl group $W = N_G(H) / Z_G(H)$.
| $\operatorname{Aut}(G)$ | $C_{23}:(C_2\times C_{396})$ |
| $\operatorname{Aut}(H)$ | $C_{36}$, of order \(36\)\(\medspace = 2^{2} \cdot 3^{2} \) |
| $\operatorname{res}(S)$ | $C_{36}$, of order \(36\)\(\medspace = 2^{2} \cdot 3^{2} \) |
| $\card{\operatorname{ker}(\operatorname{res})}$ | \(22\)\(\medspace = 2 \cdot 11 \) |
| $W$ | $C_1$, of order $1$ |
Related subgroups
| Centralizer: | $C_{74}$ | |
| Normalizer: | $C_{74}$ | |
| Normal closure: | $C_{37}\times D_{23}$ | |
| Core: | $C_{37}$ | |
| Minimal over-subgroups: | $C_{37}\times D_{23}$ | |
| Maximal under-subgroups: | $C_{37}$ | $C_2$ |
Other information
| Number of subgroups in this conjugacy class | $23$ |
| Möbius function | $-1$ |
| Projective image | $D_{23}$ |