Properties

Label 168070.c.2401.a1
Order $ 2 \cdot 5 \cdot 7 $
Index $ 7^{4} $
Normal No

Downloads

Learn more

Subgroup ($H$) information

Description:$D_{35}$
Order: \(70\)\(\medspace = 2 \cdot 5 \cdot 7 \)
Index: \(2401\)\(\medspace = 7^{4} \)
Exponent: \(70\)\(\medspace = 2 \cdot 5 \cdot 7 \)
Generators: $ad^{5}e^{6}f^{3}, b^{5}, b^{21}c^{4}d^{3}$ Copy content Toggle raw display
Derived length: $2$

The subgroup is maximal, nonabelian, a Z-group (hence solvable, supersolvable, monomial, metacyclic, metabelian, and an A-group), and hyperelementary for $p = 2$.

Ambient group ($G$) information

Description: $C_7^5:D_5$
Order: \(168070\)\(\medspace = 2 \cdot 5 \cdot 7^{5} \)
Exponent: \(70\)\(\medspace = 2 \cdot 5 \cdot 7 \)
Derived length:$3$

The ambient group is nonabelian, solvable, and an A-group. Whether it is monomial has not been computed.

Automorphism information

While the subgroup $H$ is not characteristic, the stabilizer $S$ of $H$ in the automorphism group $\operatorname{Aut}(G)$ of the ambient group acts on $H$, yielding a homomorphism $\operatorname{res} : S \to \operatorname{Aut}(H)$. The image of $\operatorname{res}$ on the inner automorphisms $\operatorname{Inn}(G) \cap S$ is the Weyl group $W = N_G(H) / Z_G(H)$.

$\operatorname{Aut}(G)$$C_7^5.C_{120}.C_6.C_2^3$
$\operatorname{Aut}(H)$ $F_5\times F_7$, of order \(840\)\(\medspace = 2^{3} \cdot 3 \cdot 5 \cdot 7 \)
$W$$D_{35}$, of order \(70\)\(\medspace = 2 \cdot 5 \cdot 7 \)

Related subgroups

Centralizer:$C_1$
Normalizer:$D_{35}$
Normal closure:$C_7^5:D_5$
Core:$C_7$

Other information

Number of subgroups in this autjugacy class$2401$
Number of conjugacy classes in this autjugacy class$1$
Möbius function not computed
Projective image$C_7^5:D_5$