Properties

Label 168070.c.1.a1
Order $ 2 \cdot 5 \cdot 7^{5} $
Index $ 1 $
Normal Yes

Downloads

Learn more

Subgroup ($H$) information

Description:$C_7^5:D_5$
Order: \(168070\)\(\medspace = 2 \cdot 5 \cdot 7^{5} \)
Index: $1$
Exponent: \(70\)\(\medspace = 2 \cdot 5 \cdot 7 \)
Generators: $ad^{5}e^{6}f^{3}, ef^{3}, b^{5}, cd^{5}e^{6}f^{5}, b^{21}c^{4}d^{3}, f, def^{4}$ Copy content Toggle raw display
Derived length: $3$

The subgroup is the radical (hence characteristic, normal, and solvable), nonabelian, a Hall subgroup, and an A-group. Whether it is a direct factor, a semidirect factor, or monomial has not been computed.

Ambient group ($G$) information

Description: $C_7^5:D_5$
Order: \(168070\)\(\medspace = 2 \cdot 5 \cdot 7^{5} \)
Exponent: \(70\)\(\medspace = 2 \cdot 5 \cdot 7 \)
Derived length:$3$

The ambient group is nonabelian, solvable, and an A-group. Whether it is monomial has not been computed.

Quotient group ($Q$) structure

Description: $C_1$
Order: $1$
Exponent: $1$
Automorphism Group: $C_1$, of order $1$
Outer Automorphisms: $C_1$, of order $1$
Derived length: $0$

The quotient is cyclic (hence abelian, nilpotent, solvable, supersolvable, monomial, elementary (for every $p$), hyperelementary, metacyclic, metabelian, a Z-group, and an A-group), a $p$-group (for every $p$), perfect, and rational.

Automorphism information

Since the subgroup $H$ is characteristic, the automorphism group $\operatorname{Aut}(G)$ of the ambient group acts on $H$, yielding a homomorphism $\operatorname{res} : \operatorname{Aut}(G) \to \operatorname{Aut}(H)$. The image of $\operatorname{res}$ on the inner automorphism group $\operatorname{Inn}(G)$ is the Weyl group $W = G / Z_G(H)$.

$\operatorname{Aut}(G)$$C_7^5.C_{120}.C_6.C_2^3$
$\operatorname{Aut}(H)$ $C_7^5.C_{120}.C_6.C_2^3$
$W$$C_7^5:D_5$, of order \(168070\)\(\medspace = 2 \cdot 5 \cdot 7^{5} \)

Related subgroups

Centralizer:$C_1$
Normalizer:$C_7^5:D_5$

Other information

Number of conjugacy classes in this autjugacy class$1$
Möbius function not computed
Projective image$C_7^5:D_5$