Properties

Label 162000.x.125.a1.a1
Order $ 2^{4} \cdot 3^{4} $
Index $ 5^{3} $
Normal No

Downloads

Learn more

Subgroup ($H$) information

Description:$(C_3^2\times C_6).S_4$
Order: \(1296\)\(\medspace = 2^{4} \cdot 3^{4} \)
Index: \(125\)\(\medspace = 5^{3} \)
Exponent: \(36\)\(\medspace = 2^{2} \cdot 3^{2} \)
Generators: $a, d^{15}e^{9}f^{11}, d^{20}, a^{2}, cd^{22}f^{11}, f^{10}, e^{10}, bcd^{8}e^{14}f^{14}$ Copy content Toggle raw display
Derived length: $4$

The subgroup is maximal, nonabelian, a Hall subgroup, and monomial (hence solvable).

Ambient group ($G$) information

Description: $(C_{15}^3.A_4):C_4$
Order: \(162000\)\(\medspace = 2^{4} \cdot 3^{4} \cdot 5^{3} \)
Exponent: \(180\)\(\medspace = 2^{2} \cdot 3^{2} \cdot 5 \)
Derived length:$4$

The ambient group is nonabelian and solvable. Whether it is monomial has not been computed.

Automorphism information

While the subgroup $H$ is not characteristic, the stabilizer $S$ of $H$ in the automorphism group $\operatorname{Aut}(G)$ of the ambient group acts on $H$, yielding a homomorphism $\operatorname{res} : S \to \operatorname{Aut}(H)$. The image of $\operatorname{res}$ on the inner automorphisms $\operatorname{Inn}(G) \cap S$ is the Weyl group $W = N_G(H) / Z_G(H)$.

$\operatorname{Aut}(G)$$D_{15}\wr S_3.C_4$, of order \(648000\)\(\medspace = 2^{6} \cdot 3^{4} \cdot 5^{3} \)
$\operatorname{Aut}(H)$ $S_3^3:D_6$, of order \(2592\)\(\medspace = 2^{5} \cdot 3^{4} \)
$W$$C_3^3:S_4$, of order \(648\)\(\medspace = 2^{3} \cdot 3^{4} \)

Related subgroups

Centralizer:$C_2$
Normalizer:$(C_3^2\times C_6).S_4$
Normal closure:$(C_{15}^3.A_4):C_4$
Core:$C_3^3$
Minimal over-subgroups:$(C_{15}^3.A_4):C_4$
Maximal under-subgroups:$C_2\times C_3^3:A_4$$C_6.\SOPlus(4,2)$$\He_3:C_{12}$$A_4:C_4$

Other information

Number of subgroups in this conjugacy class$125$
Möbius function$-1$
Projective image$(C_{15}^3.A_4):C_4$