Properties

Label 162000.x
Order \( 2^{4} \cdot 3^{4} \cdot 5^{3} \)
Exponent \( 2^{2} \cdot 3^{2} \cdot 5 \)
Nilpotent no
Solvable yes
$\card{G^{\mathrm{ab}}}$ \( 2^{2} \)
$\card{Z(G)}$ \( 1 \)
$\card{\Aut(G)}$ \( 2^{6} \cdot 3^{4} \cdot 5^{3} \)
$\card{\mathrm{Out}(G)}$ \( 2^{2} \)
Perm deg. $24$
Trans deg. $45$
Rank $2$

Related objects

Downloads

Learn more

Show commands: Gap / Magma / SageMath

Copy content comment:Define the group as a permutation group
 
Copy content magma:G := PermutationGroup< 24 | (2,3)(4,6)(5,7,10,13)(8,11)(9,12)(14,15)(17,18,20,19)(21,22)(23,24), (1,2,4)(3,5,8)(6,9,7)(10,14,15)(11,13,12)(16,17,19,21,23,24,22,20,18) >;
 
Copy content gap:G := Group( (2,3)(4,6)(5,7,10,13)(8,11)(9,12)(14,15)(17,18,20,19)(21,22)(23,24), (1,2,4)(3,5,8)(6,9,7)(10,14,15)(11,13,12)(16,17,19,21,23,24,22,20,18) );
 
Copy content sage:G = PermutationGroup(['(2,3)(4,6)(5,7,10,13)(8,11)(9,12)(14,15)(17,18,20,19)(21,22)(23,24)', '(1,2,4)(3,5,8)(6,9,7)(10,14,15)(11,13,12)(16,17,19,21,23,24,22,20,18)'])
 
Copy content sage_gap:# This uses Sage's interface to GAP, as Sage (currently) has no native support for PC groups G = gap.new('PcGroupCode(424922250324409693877805333070159301465645977174870554878233651364864539364771696130461007526720281856152322462472085856807028109323809294078252758173261994165940032089567797986736728951449083717149816743036193459803347027831,162000)'); a = G.1; b = G.3; c = G.4; d = G.5; e = G.8; f = G.10;
 

Group information

Description:$(C_{15}^3.A_4):C_4$
Order: \(162000\)\(\medspace = 2^{4} \cdot 3^{4} \cdot 5^{3} \)
Copy content comment:Order of the group
 
Copy content magma:Order(G);
 
Copy content gap:Order(G);
 
Copy content sage:G.order()
 
Copy content sage_gap:G.Order()
 
Exponent: \(180\)\(\medspace = 2^{2} \cdot 3^{2} \cdot 5 \)
Copy content comment:Exponent of the group
 
Copy content magma:Exponent(G);
 
Copy content gap:Exponent(G);
 
Copy content sage:G.exponent()
 
Copy content sage_gap:G.Exponent()
 
Automorphism group:$D_{15}\wr S_3.C_4$, of order \(648000\)\(\medspace = 2^{6} \cdot 3^{4} \cdot 5^{3} \)
Copy content comment:Automorphism group
 
Copy content gap:AutomorphismGroup(G);
 
Copy content magma:AutomorphismGroup(G);
 
Copy content sage_gap:G.AutomorphismGroup()
 
Composition factors:$C_2$ x 4, $C_3$ x 4, $C_5$ x 3
Copy content comment:Composition factors of the group
 
Copy content magma:CompositionFactors(G);
 
Copy content gap:CompositionSeries(G);
 
Copy content sage:G.composition_series()
 
Copy content sage_gap:G.CompositionSeries()
 
Derived length:$4$
Copy content comment:Derived length of the group
 
Copy content magma:DerivedLength(G);
 
Copy content gap:DerivedLength(G);
 
Copy content sage_gap:G.DerivedLength()
 

This group is nonabelian and solvable. Whether it is monomial has not been computed.

Copy content comment:Determine if the group G is abelian
 
Copy content magma:IsAbelian(G);
 
Copy content gap:IsAbelian(G);
 
Copy content sage:G.is_abelian()
 
Copy content sage_gap:G.IsAbelian()
 
Copy content comment:Determine if the group G is cyclic
 
Copy content magma:IsCyclic(G);
 
Copy content gap:IsCyclic(G);
 
Copy content sage:G.is_cyclic()
 
Copy content sage_gap:G.IsCyclic()
 
Copy content comment:Determine if the group G is nilpotent
 
Copy content magma:IsNilpotent(G);
 
Copy content gap:IsNilpotentGroup(G);
 
Copy content sage:G.is_nilpotent()
 
Copy content sage_gap:G.IsNilpotentGroup()
 
Copy content comment:Determine if the group G is solvable
 
Copy content magma:IsSolvable(G);
 
Copy content gap:IsSolvableGroup(G);
 
Copy content sage:G.is_solvable()
 
Copy content sage_gap:G.IsSolvableGroup()
 
Copy content comment:Determine if the group G is supersolvable
 
Copy content gap:IsSupersolvableGroup(G);
 
Copy content sage:G.is_supersolvable()
 
Copy content sage_gap:G.IsSupersolvableGroup()
 
Copy content comment:Determine if the group G is simple
 
Copy content magma:IsSimple(G);
 
Copy content gap:IsSimpleGroup(G);
 
Copy content sage_gap:G.IsSimpleGroup()
 

Group statistics

Copy content comment:Compute statistics for the group G
 
Copy content magma:// Magma code to output the first two rows of the group statistics table element_orders := [Order(g) : g in G]; orders := Set(element_orders); printf "Orders: %o\n", orders; printf "Elements: %o %o\n", [#[x : x in element_orders | x eq n] : n in orders], Order(G); cc_orders := [cc[1] : cc in ConjugacyClasses(G)]; printf "Conjugacy classes: %o %o\n", [#[x : x in cc_orders | x eq n] : n in orders], #cc_orders;
 
Copy content gap:# Gap code to output the first two rows of the group statistics table element_orders := List(Elements(G), g -> Order(g)); orders := Set(element_orders); Print("Orders: ", orders, "\n"); element_counts := List(orders, n -> Length(Filtered(element_orders, x -> x = n))); Print("Elements: ", element_counts, " ", Size(G), "\n"); cc_orders := List(ConjugacyClasses(G), cc -> Order(Representative(cc))); cc_counts := List(orders, n -> Length(Filtered(cc_orders, x -> x = n))); Print("Conjugacy classes: ", cc_counts, " ", Length(ConjugacyClasses(G)), "\n");
 
Copy content sage:# Sage code to output the first two rows of the group statistics table element_orders = [g.order() for g in G] orders = sorted(list(set(element_orders))) print("Orders:", orders) print("Elements:", [element_orders.count(n) for n in orders], G.order()) cc_orders = [cc[0].order() for cc in G.conjugacy_classes()] print("Conjugacy classes:", [cc_orders.count(n) for n in orders], len(cc_orders))
 

Order 1 2 3 4 5 6 9 10 12 15 18 20 30 45
Elements 1 935 1826 12600 124 13870 3600 5940 36000 10424 18000 32400 11880 14400 162000
Conjugacy classes   1 3 5 4 6 7 2 6 10 74 2 4 7 4 135
Divisions 1 3 4 2 5 6 1 4 3 32 1 1 4 1 68
Autjugacy classes 1 3 4 4 5 6 1 4 6 32 1 2 4 1 74

Copy content comment:Compute statistics about the characters of G
 
Copy content magma:// Outputs [<d_1,c_1>, <d_2,c_2>, ...] where c_i is the number of irr. complex chars. of G with degree d_i CharacterDegrees(G);
 
Copy content gap:# Outputs [[d_1,c_1], [d_2,c_2], ...] where c_i is the number of irr. complex chars. of G with degree d_i CharacterDegrees(G);
 
Copy content sage:# Outputs [[d_1,c_1], [d_2,c_2], ...] where c_i is the number of irr. complex chars. of G with degree d_i character_degrees = [c[0] for c in G.character_table()] [[n, character_degrees.count(n)] for n in set(character_degrees)]
 
Copy content sage_gap:G.CharacterDegrees()
 

Dimension 1 2 3 4 6 8 12 16 24 32 48 64 96 192
Irr. complex chars.   4 2 4 8 8 4 16 9 16 0 64 0 0 0 135
Irr. rational chars. 2 3 2 0 3 2 7 4 8 2 11 1 16 7 68

Minimal presentations

Permutation degree:$24$
Transitive degree:$45$
Rank: $2$
Inequivalent generating pairs: $14508$

Minimal degrees of faithful linear representations

Over $\mathbb{C}$ Over $\mathbb{R}$ Over $\mathbb{Q}$
Irreducible 16 24 24
Arbitrary 16 18 18

Constructions

Show commands: Gap / Magma / SageMath


Presentation: ${\langle a, b, c, d, e, f \mid a^{4}=c^{2}=d^{30}=e^{15}=f^{15}=[c,e]=[e,f]= \!\cdots\! \rangle}$ Copy content Toggle raw display
Copy content comment:Define the group with the given generators and relations
 
Copy content magma:G := PCGroup([11, 2, 2, 3, 2, 2, 3, 5, 3, 5, 3, 5, 22, 2853446, 1296979, 823308, 6659667, 1193558, 73285, 661984, 1551675, 1601351, 3227, 158, 1425605, 17440, 83187, 3734, 258, 4989606, 83188, 3735, 126727, 126738, 3088829, 37011, 348, 427688, 427699, 2405730, 35692, 68649, 6534020, 1351, 1386042, 693053, 438, 52282, 4388, 1306843, 653454]); a,b,c,d,e,f := Explode([G.1, G.3, G.4, G.5, G.8, G.10]); AssignNames(~G, ["a", "a2", "b", "c", "d", "d2", "d6", "e", "e3", "f", "f3"]);
 
Copy content gap:G := PcGroupCode(424922250324409693877805333070159301465645977174870554878233651364864539364771696130461007526720281856152322462472085856807028109323809294078252758173261994165940032089567797986736728951449083717149816743036193459803347027831,162000); a := G.1; b := G.3; c := G.4; d := G.5; e := G.8; f := G.10;
 
Copy content sage:# This uses Sage's interface to GAP, as Sage (currently) has no native support for PC groups G = gap.new('PcGroupCode(424922250324409693877805333070159301465645977174870554878233651364864539364771696130461007526720281856152322462472085856807028109323809294078252758173261994165940032089567797986736728951449083717149816743036193459803347027831,162000)'); a = G.1; b = G.3; c = G.4; d = G.5; e = G.8; f = G.10;
 
Copy content sage_gap:# This uses Sage's interface to GAP, as Sage (currently) has no native support for PC groups G = gap.new('PcGroupCode(424922250324409693877805333070159301465645977174870554878233651364864539364771696130461007526720281856152322462472085856807028109323809294078252758173261994165940032089567797986736728951449083717149816743036193459803347027831,162000)'); a = G.1; b = G.3; c = G.4; d = G.5; e = G.8; f = G.10;
 
Permutation group:Degree $24$ $\langle(2,3)(4,6)(5,7,10,13)(8,11)(9,12)(14,15)(17,18,20,19)(21,22)(23,24), (1,2,4)(3,5,8)(6,9,7)(10,14,15)(11,13,12)(16,17,19,21,23,24,22,20,18)\rangle$ Copy content Toggle raw display
Copy content comment:Define the group as a permutation group
 
Copy content magma:G := PermutationGroup< 24 | (2,3)(4,6)(5,7,10,13)(8,11)(9,12)(14,15)(17,18,20,19)(21,22)(23,24), (1,2,4)(3,5,8)(6,9,7)(10,14,15)(11,13,12)(16,17,19,21,23,24,22,20,18) >;
 
Copy content gap:G := Group( (2,3)(4,6)(5,7,10,13)(8,11)(9,12)(14,15)(17,18,20,19)(21,22)(23,24), (1,2,4)(3,5,8)(6,9,7)(10,14,15)(11,13,12)(16,17,19,21,23,24,22,20,18) );
 
Copy content sage:G = PermutationGroup(['(2,3)(4,6)(5,7,10,13)(8,11)(9,12)(14,15)(17,18,20,19)(21,22)(23,24)', '(1,2,4)(3,5,8)(6,9,7)(10,14,15)(11,13,12)(16,17,19,21,23,24,22,20,18)'])
 
Transitive group: 45T1152 more information
Direct product: not isomorphic to a non-trivial direct product
Semidirect product: $(C_{15}^3.A_4)$ $\,\rtimes\,$ $C_4$ $C_3^3$ $\,\rtimes\,$ $(D_5^3.S_3)$ $C_5^3$ $\,\rtimes\,$ $((C_3^2\times C_6).S_4)$ more information
Trans. wreath product: not isomorphic to a non-trivial transitive wreath product
Non-split product: $(C_{15}^3.C_2^3)$ . $S_3$ $(C_3^3\times C_5^2:D_5)$ . $S_4$ $(C_3^3:D_5\wr C_3)$ . $C_2$ $(C_5^3:C_2)$ . $(C_3^3:S_4)$ more information

Elements of the group are displayed as words in the presentation generators from the presentation above.

Homology

Abelianization: $C_{4} $
Copy content comment:The abelianization of the group
 
Copy content magma:quo< G | CommutatorSubgroup(G) >;
 
Copy content gap:FactorGroup(G, DerivedSubgroup(G));
 
Copy content sage:G.quotient(G.commutator())
 
Schur multiplier: $C_{2}$
Copy content comment:The Schur multiplier of the group
 
Copy content gap:AbelianInvariantsMultiplier(G);
 
Copy content sage:G.homology(2)
 
Copy content sage_gap:G.AbelianInvariantsMultiplier()
 
Commutator length: $1$
Copy content comment:The commutator length of the group
 
Copy content gap:CommutatorLength(G);
 
Copy content sage_gap:G.CommutatorLength()
 

Subgroups

Copy content comment:List of subgroups of the group
 
Copy content magma:Subgroups(G);
 
Copy content gap:AllSubgroups(G);
 
Copy content sage:G.subgroups()
 
Copy content sage_gap:G.AllSubgroups()
 

There are 310712 subgroups in 980 conjugacy classes, 11 normal, and all normal subgroups are characteristic.

Characteristic subgroups are shown in this color.

Special subgroups

Center: $Z \simeq$ $C_1$ $G/Z \simeq$ $(C_{15}^3.A_4):C_4$
Copy content comment:Center of the group
 
Copy content magma:Center(G);
 
Copy content gap:Center(G);
 
Copy content sage:G.center()
 
Copy content sage_gap:G.Center()
 
Commutator: $G' \simeq$ $C_{15}^3.A_4$ $G/G' \simeq$ $C_4$
Copy content comment:Commutator subgroup of the group G
 
Copy content magma:CommutatorSubgroup(G);
 
Copy content gap:DerivedSubgroup(G);
 
Copy content sage:G.commutator()
 
Copy content sage_gap:G.DerivedSubgroup()
 
Frattini: $\Phi \simeq$ $C_1$ $G/\Phi \simeq$ $(C_{15}^3.A_4):C_4$
Copy content comment:Frattini subgroup of the group G
 
Copy content magma:FrattiniSubgroup(G);
 
Copy content gap:FrattiniSubgroup(G);
 
Copy content sage:G.frattini_subgroup()
 
Copy content sage_gap:G.FrattiniSubgroup()
 
Fitting: $\operatorname{Fit} \simeq$ $C_{15}^3$ $G/\operatorname{Fit} \simeq$ $A_4:C_4$
Copy content comment:Fitting subgroup of the group G
 
Copy content magma:FittingSubgroup(G);
 
Copy content gap:FittingSubgroup(G);
 
Copy content sage:G.fitting_subgroup()
 
Copy content sage_gap:G.FittingSubgroup()
 
Radical: $R \simeq$ $(C_{15}^3.A_4):C_4$ $G/R \simeq$ $C_1$
Copy content comment:Radical of the group G
 
Copy content magma:Radical(G);
 
Copy content gap:SolvableRadical(G);
 
Copy content sage_gap:G.SolvableRadical()
 
Socle: $\operatorname{soc} \simeq$ $C_{15}^3$ $G/\operatorname{soc} \simeq$ $A_4:C_4$
Copy content comment:Socle of the group G
 
Copy content magma:Socle(G);
 
Copy content gap:Socle(G);
 
Copy content sage:G.socle()
 
Copy content sage_gap:G.Socle()
 
2-Sylow subgroup: $P_{ 2 } \simeq$ $C_2^2:C_4$
3-Sylow subgroup: $P_{ 3 } \simeq$ $C_3\wr C_3$
5-Sylow subgroup: $P_{ 5 } \simeq$ $C_5^3$

Subgroup diagram and profile

Series

Derived series $(C_{15}^3.A_4):C_4$ $\rhd$ $C_{15}^3.A_4$ $\rhd$ $C_{15}^3.C_2^2$ $\rhd$ $C_{15}^3$ $\rhd$ $C_1$
Copy content comment:Derived series of the group GF
 
Copy content magma:DerivedSeries(G);
 
Copy content gap:DerivedSeriesOfGroup(G);
 
Copy content sage:G.derived_series()
 
Copy content sage_gap:G.DerivedSeriesOfGroup()
 
Chief series $(C_{15}^3.A_4):C_4$ $\rhd$ $C_3^3:D_5\wr C_3$ $\rhd$ $C_{15}^3.A_4$ $\rhd$ $C_{15}^3.C_2^2$ $\rhd$ $C_{15}^3$ $\rhd$ $C_5^3$ $\rhd$ $C_1$
Copy content comment:Chief series of the group G
 
Copy content magma:ChiefSeries(G);
 
Copy content gap:ChiefSeries(G);
 
Copy content sage_gap:G.ChiefSeries()
 
Lower central series $(C_{15}^3.A_4):C_4$ $\rhd$ $C_{15}^3.A_4$
Copy content comment:The lower central series of the group G
 
Copy content magma:LowerCentralSeries(G);
 
Copy content gap:LowerCentralSeriesOfGroup(G);
 
Copy content sage:G.lower_central_series()
 
Copy content sage_gap:G.LowerCentralSeriesOfGroup()
 
Upper central series $C_1$
Copy content comment:The upper central series of the group G
 
Copy content magma:UpperCentralSeries(G);
 
Copy content gap:UpperCentralSeriesOfGroup(G);
 
Copy content sage:G.upper_central_series()
 
Copy content sage_gap:G.UpperCentralSeriesOfGroup()
 

Supergroups

This group is a maximal subgroup of 5 larger groups in the database.

This group is a maximal quotient of 2 larger groups in the database.

Character theory

Copy content comment:Character table
 
Copy content magma:CharacterTable(G); // Output not guaranteed to exactly match the LMFDB table
 
Copy content gap:CharacterTable(G); # Output not guaranteed to exactly match the LMFDB table
 
Copy content sage:G.character_table() # Output not guaranteed to exactly match the LMFDB table
 
Copy content sage_gap:G.CharacterTable() # Output not guaranteed to exactly match the LMFDB table
 

Complex character table

See the $135 \times 135$ character table (warning: may be slow to load). Alternatively, you may search for characters of this group with desired properties.

Rational character table

See the $68 \times 68$ rational character table.