Properties

Label 162000.o.5.a1
Order $ 2^{4} \cdot 3^{4} \cdot 5^{2} $
Index $ 5 $
Normal No

Downloads

Learn more

Subgroup ($H$) information

Description:$C_{15}^2.(C_4\times S_3^2)$
Order: \(32400\)\(\medspace = 2^{4} \cdot 3^{4} \cdot 5^{2} \)
Index: \(5\)
Exponent: \(180\)\(\medspace = 2^{2} \cdot 3^{2} \cdot 5 \)
Generators: $d^{3}f^{12}, d^{10}f^{5}, b^{3}c^{2}d^{6}f^{12}, e^{2}f^{5}, b^{6}c^{8}d^{6}f^{12}, ef^{5}, ab^{6}c^{8}d^{6}ef^{12}, c^{5}, b^{4}d^{6}f^{12}, f^{3}$ Copy content Toggle raw display
Derived length: $3$

The subgroup is maximal, nonabelian, and solvable. Whether it is monomial has not been computed.

Ambient group ($G$) information

Description: $C_{15}^2.(F_5\times S_3^2)$
Order: \(162000\)\(\medspace = 2^{4} \cdot 3^{4} \cdot 5^{3} \)
Exponent: \(180\)\(\medspace = 2^{2} \cdot 3^{2} \cdot 5 \)
Derived length:$3$

The ambient group is nonabelian and solvable. Whether it is monomial has not been computed.

Automorphism information

While the subgroup $H$ is not characteristic, the stabilizer $S$ of $H$ in the automorphism group $\operatorname{Aut}(G)$ of the ambient group acts on $H$, yielding a homomorphism $\operatorname{res} : S \to \operatorname{Aut}(H)$. The image of $\operatorname{res}$ on the inner automorphisms $\operatorname{Inn}(G) \cap S$ is the Weyl group $W = N_G(H) / Z_G(H)$.

$\operatorname{Aut}(G)$$C_{15}^3.C_6^2.C_2^4$
$\operatorname{Aut}(H)$ $C_{15}^2.(C_{12}\times S_3^2).C_2$
$W$$C_{15}^2.(C_4\times S_3^2)$, of order \(32400\)\(\medspace = 2^{4} \cdot 3^{4} \cdot 5^{2} \)

Related subgroups

Centralizer:$C_1$
Normalizer:$C_{15}^2.(C_4\times S_3^2)$
Normal closure:$C_{15}^2.(F_5\times S_3^2)$
Core:$C_{15}^2.S_3^2$
Minimal over-subgroups:$C_{15}^2.(F_5\times S_3^2)$
Maximal under-subgroups:$C_{15}^2.(S_3\times D_6)$$C_{15}^2.(S_3\times C_{12})$$C_{15}^2:C_6.D_6$$C_{15}^2.(S_3\times C_{12})$$C_{15}^2:C_6.D_6$$C_{15}^2:C_{12}:S_3$$C_{15}^2:C_6.D_6$$C_{15}^2:(C_4\times D_6)$$C_{15}^2.C_6.C_2^3$$C_4\times C_3^3:D_6$

Other information

Number of subgroups in this autjugacy class$5$
Number of conjugacy classes in this autjugacy class$1$
Möbius function not computed
Projective image$C_{15}^2.(F_5\times S_3^2)$