Properties

Label 162000.o.15.e1
Order $ 2^{4} \cdot 3^{3} \cdot 5^{2} $
Index $ 3 \cdot 5 $
Normal No

Downloads

Learn more

Subgroup ($H$) information

Description:not computed
Order: \(10800\)\(\medspace = 2^{4} \cdot 3^{3} \cdot 5^{2} \)
Index: \(15\)\(\medspace = 3 \cdot 5 \)
Exponent: not computed
Generators: $f^{3}, d^{3}f^{6}, b^{3}c^{2}d^{6}f^{12}, d^{5}e, b^{6}c^{8}d^{6}f^{12}, d^{10}f^{5}, ab^{6}c^{8}d^{6}ef^{12}, c^{5}, e^{2}f^{5}$ Copy content Toggle raw display
Derived length: not computed

The subgroup is nonabelian, supersolvable (hence solvable and monomial), metabelian, and an A-group. Whether it is elementary, hyperelementary, monomial, simple, quasisimple, perfect, almost simple, or rational has not been computed.

Ambient group ($G$) information

Description: $C_{15}^2.(F_5\times S_3^2)$
Order: \(162000\)\(\medspace = 2^{4} \cdot 3^{4} \cdot 5^{3} \)
Exponent: \(180\)\(\medspace = 2^{2} \cdot 3^{2} \cdot 5 \)
Derived length:$3$

The ambient group is nonabelian and solvable. Whether it is monomial has not been computed.

Automorphism information

While the subgroup $H$ is not characteristic, the stabilizer $S$ of $H$ in the automorphism group $\operatorname{Aut}(G)$ of the ambient group acts on $H$, yielding a homomorphism $\operatorname{res} : S \to \operatorname{Aut}(H)$. The image of $\operatorname{res}$ on the inner automorphisms $\operatorname{Inn}(G) \cap S$ is the Weyl group $W = N_G(H) / Z_G(H)$.

$\operatorname{Aut}(G)$$C_{15}^3.C_6^2.C_2^4$
$\operatorname{Aut}(H)$ not computed
$\card{W}$\(10800\)\(\medspace = 2^{4} \cdot 3^{3} \cdot 5^{2} \)

Related subgroups

Centralizer:$C_1$
Normalizer:$C_{15}^2.C_6.C_2^3$
Normal closure:$C_{15}^2.(F_5\times S_3^2)$
Core:$C_{15}^2:S_3$
Minimal over-subgroups:$C_{15}^3.C_4.C_2^2$$C_{15}^2.(C_4\times S_3^2)$
Maximal under-subgroups:$C_{15}^2.D_6.C_2$$C_{15}^2.C_6.C_2^2$$C_{15}^2.C_{12}.C_2$$C_3\times C_5^2:(C_{12}\times S_3)$$C_{15}^2.C_6.C_2^2$$C_{15}^2.C_{12}.C_2$$C_{15}^2.C_{12}.C_2$$C_{15}^2.C_4.C_2^2$$D_{15}^2:C_4$$D_{15}^2:C_4$$C_3:S_3^2\times F_5$$C_3:S_3^2\times F_5$

Other information

Number of subgroups in this autjugacy class$15$
Number of conjugacy classes in this autjugacy class$1$
Möbius function not computed
Projective image$C_{15}^2.(F_5\times S_3^2)$