Properties

Label 1600.9136.8.d1.a1
Order $ 2^{3} \cdot 5^{2} $
Index $ 2^{3} $
Normal Yes

Downloads

Learn more

Subgroup ($H$) information

Description:$C_{10}\times C_{20}$
Order: \(200\)\(\medspace = 2^{3} \cdot 5^{2} \)
Index: \(8\)\(\medspace = 2^{3} \)
Exponent: \(20\)\(\medspace = 2^{2} \cdot 5 \)
Generators: $bc^{5}d^{5}, c^{4}, d^{4}, d^{10}, c^{10}$ Copy content Toggle raw display
Nilpotency class: $1$
Derived length: $1$

The subgroup is characteristic (hence normal), abelian (hence nilpotent, solvable, supersolvable, monomial, metabelian, and an A-group), and metacyclic.

Ambient group ($G$) information

Description: $C_{10}^2.C_2^4$
Order: \(1600\)\(\medspace = 2^{6} \cdot 5^{2} \)
Exponent: \(20\)\(\medspace = 2^{2} \cdot 5 \)
Derived length:$2$

The ambient group is nonabelian, supersolvable (hence solvable and monomial), and metabelian.

Quotient group ($Q$) structure

Description: $C_2^3$
Order: \(8\)\(\medspace = 2^{3} \)
Exponent: \(2\)
Automorphism Group: $\PSL(2,7)$, of order \(168\)\(\medspace = 2^{3} \cdot 3 \cdot 7 \)
Outer Automorphisms: $\PSL(2,7)$, of order \(168\)\(\medspace = 2^{3} \cdot 3 \cdot 7 \)
Nilpotency class: $1$
Derived length: $1$

The quotient is abelian (hence nilpotent, solvable, supersolvable, monomial, metabelian, and an A-group), a $p$-group (hence elementary and hyperelementary), and rational.

Automorphism information

Since the subgroup $H$ is characteristic, the automorphism group $\operatorname{Aut}(G)$ of the ambient group acts on $H$, yielding a homomorphism $\operatorname{res} : \operatorname{Aut}(G) \to \operatorname{Aut}(H)$. The image of $\operatorname{res}$ on the inner automorphism group $\operatorname{Inn}(G)$ is the Weyl group $W = G / Z_G(H)$.

$\operatorname{Aut}(G)$$C_2^2\times C_4\times C_2^6.C_2\times F_5$
$\operatorname{Aut}(H)$ $D_4\times \GL(2,5)$, of order \(3840\)\(\medspace = 2^{8} \cdot 3 \cdot 5 \)
$\operatorname{res}(\operatorname{Aut}(G))$$C_2^2\times C_4^2$, of order \(64\)\(\medspace = 2^{6} \)
$\card{\operatorname{ker}(\operatorname{res})}$\(640\)\(\medspace = 2^{7} \cdot 5 \)
$W$$C_2^2$, of order \(4\)\(\medspace = 2^{2} \)

Related subgroups

Centralizer:$C_2\times C_{10}\times C_{20}$
Normalizer:$C_{10}^2.C_2^4$
Minimal over-subgroups:$C_2\times C_{10}\times C_{20}$$C_{20}\times D_{10}$$C_{20}\times D_{10}$$C_4.C_{10}^2$$C_{20}:C_{20}$$C_{20}.D_{10}$$C_{20}:C_{20}$
Maximal under-subgroups:$C_{10}^2$$C_5\times C_{20}$$C_5\times C_{20}$$C_2\times C_{20}$$C_2\times C_{20}$$C_2\times C_{20}$$C_2\times C_{20}$

Other information

Möbius function$-8$
Projective image$C_2^2\times D_{10}$