Properties

Label 1600.9136.16.f1.b1
Order $ 2^{2} \cdot 5^{2} $
Index $ 2^{4} $
Normal Yes

Downloads

Learn more

Subgroup ($H$) information

Description:$C_5\times C_{20}$
Order: \(100\)\(\medspace = 2^{2} \cdot 5^{2} \)
Index: \(16\)\(\medspace = 2^{4} \)
Exponent: \(20\)\(\medspace = 2^{2} \cdot 5 \)
Generators: $bc^{5}d^{15}, d^{4}, c^{10}, c^{4}$ Copy content Toggle raw display
Nilpotency class: $1$
Derived length: $1$

The subgroup is normal, abelian (hence nilpotent, solvable, supersolvable, monomial, metabelian, and an A-group), elementary for $p = 5$ (hence hyperelementary), and metacyclic.

Ambient group ($G$) information

Description: $C_{10}^2.C_2^4$
Order: \(1600\)\(\medspace = 2^{6} \cdot 5^{2} \)
Exponent: \(20\)\(\medspace = 2^{2} \cdot 5 \)
Derived length:$2$

The ambient group is nonabelian, supersolvable (hence solvable and monomial), and metabelian.

Quotient group ($Q$) structure

Description: $C_2\times D_4$
Order: \(16\)\(\medspace = 2^{4} \)
Exponent: \(4\)\(\medspace = 2^{2} \)
Automorphism Group: $C_2\wr C_2^2$, of order \(64\)\(\medspace = 2^{6} \)
Outer Automorphisms: $C_2\times D_4$, of order \(16\)\(\medspace = 2^{4} \)
Nilpotency class: $2$
Derived length: $2$

The quotient is nonabelian, a $p$-group (hence nilpotent, solvable, supersolvable, monomial, elementary, and hyperelementary), metabelian, and rational.

Automorphism information

While the subgroup $H$ is not characteristic, the stabilizer $S$ of $H$ in the automorphism group $\operatorname{Aut}(G)$ of the ambient group acts on $H$, yielding a homomorphism $\operatorname{res} : S \to \operatorname{Aut}(H)$. The image of $\operatorname{res}$ on the inner automorphisms $\operatorname{Inn}(G) \cap S$ is the Weyl group $W = N_G(H) / Z_G(H)$.

$\operatorname{Aut}(G)$$C_2^2\times C_4\times C_2^6.C_2\times F_5$
$\operatorname{Aut}(H)$ $C_2\times \GL(2,5)$, of order \(960\)\(\medspace = 2^{6} \cdot 3 \cdot 5 \)
$\operatorname{res}(S)$$C_2\times C_4^2$, of order \(32\)\(\medspace = 2^{5} \)
$\card{\operatorname{ker}(\operatorname{res})}$\(640\)\(\medspace = 2^{7} \cdot 5 \)
$W$$C_2^2$, of order \(4\)\(\medspace = 2^{2} \)

Related subgroups

Centralizer:$C_2\times C_{10}\times C_{20}$
Normalizer:$C_{10}^2.C_2^4$
Minimal over-subgroups:$C_{10}\times C_{20}$$D_5\times C_{20}$$D_5\times C_{20}$$C_{10}\times C_{20}$$D_5\times C_{20}$$Q_8\times C_5^2$$C_5^2:Q_8$
Maximal under-subgroups:$C_5\times C_{10}$$C_{20}$$C_{20}$$C_{20}$$C_{20}$
Autjugate subgroups:1600.9136.16.f1.a1

Other information

Möbius function$0$
Projective image$D_4\times D_{10}$