Properties

Label 1600.9136.40.e1.a1
Order $ 2^{3} \cdot 5 $
Index $ 2^{3} \cdot 5 $
Normal Yes

Downloads

Learn more

Subgroup ($H$) information

Description:$C_2\times C_{20}$
Order: \(40\)\(\medspace = 2^{3} \cdot 5 \)
Index: \(40\)\(\medspace = 2^{3} \cdot 5 \)
Exponent: \(20\)\(\medspace = 2^{2} \cdot 5 \)
Generators: $bc^{5}d^{5}, c^{4}, c^{10}, d^{10}$ Copy content Toggle raw display
Nilpotency class: $1$
Derived length: $1$

The subgroup is characteristic (hence normal), abelian (hence nilpotent, solvable, supersolvable, monomial, metabelian, and an A-group), elementary for $p = 2$ (hence hyperelementary), and metacyclic.

Ambient group ($G$) information

Description: $C_{10}^2.C_2^4$
Order: \(1600\)\(\medspace = 2^{6} \cdot 5^{2} \)
Exponent: \(20\)\(\medspace = 2^{2} \cdot 5 \)
Derived length:$2$

The ambient group is nonabelian, supersolvable (hence solvable and monomial), and metabelian.

Quotient group ($Q$) structure

Description: $C_2\times D_{10}$
Order: \(40\)\(\medspace = 2^{3} \cdot 5 \)
Exponent: \(10\)\(\medspace = 2 \cdot 5 \)
Automorphism Group: $F_5\times S_4$, of order \(480\)\(\medspace = 2^{5} \cdot 3 \cdot 5 \)
Outer Automorphisms: $C_2\times S_4$, of order \(48\)\(\medspace = 2^{4} \cdot 3 \)
Nilpotency class: $-1$
Derived length: $2$

The quotient is nonabelian, supersolvable (hence solvable and monomial), hyperelementary for $p = 2$, metabelian, and an A-group.

Automorphism information

Since the subgroup $H$ is characteristic, the automorphism group $\operatorname{Aut}(G)$ of the ambient group acts on $H$, yielding a homomorphism $\operatorname{res} : \operatorname{Aut}(G) \to \operatorname{Aut}(H)$. The image of $\operatorname{res}$ on the inner automorphism group $\operatorname{Inn}(G)$ is the Weyl group $W = G / Z_G(H)$.

$\operatorname{Aut}(G)$$C_2^2\times C_4\times C_2^6.C_2\times F_5$
$\operatorname{Aut}(H)$ $C_4\times D_4$, of order \(32\)\(\medspace = 2^{5} \)
$\operatorname{res}(\operatorname{Aut}(G))$$C_2^2\times C_4$, of order \(16\)\(\medspace = 2^{4} \)
$\card{\operatorname{ker}(\operatorname{res})}$\(2560\)\(\medspace = 2^{9} \cdot 5 \)
$W$$C_2$, of order \(2\)

Related subgroups

Centralizer:$C_{10}^2.C_2^3$
Normalizer:$C_{10}^2.C_2^4$
Minimal over-subgroups:$C_{10}\times C_{20}$$C_2^2\times C_{20}$$Q_8\times C_{10}$$C_4:C_{20}$$C_2^2\times C_{20}$$C_2^2\times C_{20}$$Q_8\times C_{10}$$C_4:C_{20}$
Maximal under-subgroups:$C_2\times C_{10}$$C_{20}$$C_{20}$$C_2\times C_4$

Other information

Möbius function$40$
Projective image$C_2^2\times D_{10}$