Properties

Label 1600.5492.25.a1
Order $ 2^{6} $
Index $ 5^{2} $
Normal Yes

Downloads

Learn more

Subgroup ($H$) information

Description:$C_4.C_4^2$
Order: \(64\)\(\medspace = 2^{6} \)
Index: \(25\)\(\medspace = 5^{2} \)
Exponent: \(8\)\(\medspace = 2^{3} \)
Generators: $a, b^{5}, c^{25}$ Copy content Toggle raw display
Nilpotency class: $2$
Derived length: $2$

The subgroup is characteristic (hence normal), a direct factor, nonabelian, a $2$-Sylow subgroup (hence nilpotent, solvable, supersolvable, a Hall subgroup, and monomial), a $p$-group (hence elementary and hyperelementary), and metabelian.

Ambient group ($G$) information

Description: $C_4.C_{20}^2$
Order: \(1600\)\(\medspace = 2^{6} \cdot 5^{2} \)
Exponent: \(40\)\(\medspace = 2^{3} \cdot 5 \)
Nilpotency class:$2$
Derived length:$2$

The ambient group is nonabelian, nilpotent (hence solvable, supersolvable, and monomial), and metabelian.

Quotient group ($Q$) structure

Description: $C_5^2$
Order: \(25\)\(\medspace = 5^{2} \)
Exponent: \(5\)
Automorphism Group: $\GL(2,5)$, of order \(480\)\(\medspace = 2^{5} \cdot 3 \cdot 5 \)
Outer Automorphisms: $\GL(2,5)$, of order \(480\)\(\medspace = 2^{5} \cdot 3 \cdot 5 \)
Nilpotency class: $1$
Derived length: $1$

The quotient is abelian (hence nilpotent, solvable, supersolvable, monomial, metabelian, and an A-group), a $p$-group (hence elementary and hyperelementary), and metacyclic.

Automorphism information

Since the subgroup $H$ is characteristic, the automorphism group $\operatorname{Aut}(G)$ of the ambient group acts on $H$, yielding a homomorphism $\operatorname{res} : \operatorname{Aut}(G) \to \operatorname{Aut}(H)$. The image of $\operatorname{res}$ on the inner automorphism group $\operatorname{Inn}(G)$ is the Weyl group $W = G / Z_G(H)$.

$\operatorname{Aut}(G)$$C_2^5.C_2^6.C_2^2.S_5$
$\operatorname{Aut}(H)$ $C_2^5.D_4^2$, of order \(2048\)\(\medspace = 2^{11} \)
$\operatorname{res}(\operatorname{Aut}(G))$$C_2^5.D_4^2$, of order \(2048\)\(\medspace = 2^{11} \)
$\card{\operatorname{ker}(\operatorname{res})}$\(480\)\(\medspace = 2^{5} \cdot 3 \cdot 5 \)
$W$$C_2^2$, of order \(4\)\(\medspace = 2^{2} \)

Related subgroups

Centralizer:$C_2\times C_{10}\times C_{20}$
Normalizer:$C_4.C_{20}^2$
Complements:$C_5^2$
Minimal over-subgroups:$C_4^2.C_{20}$
Maximal under-subgroups:$C_2\times C_4^2$$C_2^2\times C_8$$C_8:C_4$

Other information

Number of conjugacy classes in this autjugacy class$1$
Möbius function$5$
Projective image$C_{10}^2$