Subgroup ($H$) information
Description: | $C_2$ |
Order: | \(2\) |
Index: | \(7992\)\(\medspace = 2^{3} \cdot 3^{3} \cdot 37 \) |
Exponent: | \(2\) |
Generators: |
$a^{18}$
|
Nilpotency class: | $1$ |
Derived length: | $1$ |
The subgroup is cyclic (hence abelian, nilpotent, solvable, supersolvable, monomial, elementary, hyperelementary, metacyclic, metabelian, a Z-group, and an A-group), a $p$-group, simple, and rational.
Ambient group ($G$) information
Description: | $C_{12}\times F_{37}$ |
Order: | \(15984\)\(\medspace = 2^{4} \cdot 3^{3} \cdot 37 \) |
Exponent: | \(1332\)\(\medspace = 2^{2} \cdot 3^{2} \cdot 37 \) |
Derived length: | $2$ |
The ambient group is nonabelian, metacyclic (hence solvable, supersolvable, monomial, and metabelian), and an A-group.
Automorphism information
While the subgroup $H$ is not characteristic, the stabilizer $S$ of $H$ in the automorphism group $\operatorname{Aut}(G)$ of the ambient group acts on $H$, yielding a homomorphism $\operatorname{res} : S \to \operatorname{Aut}(H)$. The image of $\operatorname{res}$ on the inner automorphisms $\operatorname{Inn}(G) \cap S$ is the Weyl group $W = N_G(H) / Z_G(H)$.
$\operatorname{Aut}(G)$ | $C_{222}.C_{18}.C_2^4$ |
$\operatorname{Aut}(H)$ | $C_1$, of order $1$ |
$W$ | $C_1$, of order $1$ |
Related subgroups
Centralizer: | $C_{12}\times C_{36}$ | |||||
Normalizer: | $C_{12}\times C_{36}$ | |||||
Normal closure: | $D_{74}$ | |||||
Core: | $C_1$ | |||||
Minimal over-subgroups: | $D_{37}$ | $C_6$ | $C_6$ | $C_6$ | $C_2^2$ | $C_4$ |
Maximal under-subgroups: | $C_1$ |
Other information
Number of subgroups in this autjugacy class | $74$ |
Number of conjugacy classes in this autjugacy class | $2$ |
Möbius function | $0$ |
Projective image | $C_{12}\times F_{37}$ |