Properties

Label 15984.a.37.a1
Order $ 2^{4} \cdot 3^{3} $
Index $ 37 $
Normal No

Downloads

Learn more

Subgroup ($H$) information

Description:$C_{12}\times C_{36}$
Order: \(432\)\(\medspace = 2^{4} \cdot 3^{3} \)
Index: \(37\)
Exponent: \(36\)\(\medspace = 2^{2} \cdot 3^{2} \)
Generators: $a^{9}, b^{222}, a^{18}, b^{111}, a^{12}, a^{4}, b^{148}$ Copy content Toggle raw display
Nilpotency class: $1$
Derived length: $1$

The subgroup is maximal, abelian (hence nilpotent, solvable, supersolvable, monomial, metabelian, and an A-group), a Hall subgroup, and metacyclic.

Ambient group ($G$) information

Description: $C_{12}\times F_{37}$
Order: \(15984\)\(\medspace = 2^{4} \cdot 3^{3} \cdot 37 \)
Exponent: \(1332\)\(\medspace = 2^{2} \cdot 3^{2} \cdot 37 \)
Derived length:$2$

The ambient group is nonabelian, metacyclic (hence solvable, supersolvable, monomial, and metabelian), and an A-group.

Automorphism information

While the subgroup $H$ is not characteristic, the stabilizer $S$ of $H$ in the automorphism group $\operatorname{Aut}(G)$ of the ambient group acts on $H$, yielding a homomorphism $\operatorname{res} : S \to \operatorname{Aut}(H)$. The image of $\operatorname{res}$ on the inner automorphisms $\operatorname{Inn}(G) \cap S$ is the Weyl group $W = N_G(H) / Z_G(H)$.

$\operatorname{Aut}(G)$$C_{222}.C_{18}.C_2^4$
$\operatorname{Aut}(H)$ $(A_4\times \He_3).C_2.C_2^4$
$W$$C_1$, of order $1$

Related subgroups

Centralizer:$C_{12}\times C_{36}$
Normalizer:$C_{12}\times C_{36}$
Normal closure:$C_{12}\times F_{37}$
Core:$C_{12}$
Minimal over-subgroups:$C_{12}\times F_{37}$
Maximal under-subgroups:$C_6\times C_{36}$$C_6\times C_{36}$$C_{12}^2$$C_4\times C_{36}$

Other information

Number of subgroups in this autjugacy class$37$
Number of conjugacy classes in this autjugacy class$1$
Möbius function$-1$
Projective image$F_{37}$