Subgroup ($H$) information
Description: | $C_{12}\times C_{36}$ |
Order: | \(432\)\(\medspace = 2^{4} \cdot 3^{3} \) |
Index: | \(37\) |
Exponent: | \(36\)\(\medspace = 2^{2} \cdot 3^{2} \) |
Generators: |
$a^{9}, b^{222}, a^{18}, b^{111}, a^{12}, a^{4}, b^{148}$
|
Nilpotency class: | $1$ |
Derived length: | $1$ |
The subgroup is maximal, abelian (hence nilpotent, solvable, supersolvable, monomial, metabelian, and an A-group), a Hall subgroup, and metacyclic.
Ambient group ($G$) information
Description: | $C_{12}\times F_{37}$ |
Order: | \(15984\)\(\medspace = 2^{4} \cdot 3^{3} \cdot 37 \) |
Exponent: | \(1332\)\(\medspace = 2^{2} \cdot 3^{2} \cdot 37 \) |
Derived length: | $2$ |
The ambient group is nonabelian, metacyclic (hence solvable, supersolvable, monomial, and metabelian), and an A-group.
Automorphism information
While the subgroup $H$ is not characteristic, the stabilizer $S$ of $H$ in the automorphism group $\operatorname{Aut}(G)$ of the ambient group acts on $H$, yielding a homomorphism $\operatorname{res} : S \to \operatorname{Aut}(H)$. The image of $\operatorname{res}$ on the inner automorphisms $\operatorname{Inn}(G) \cap S$ is the Weyl group $W = N_G(H) / Z_G(H)$.
$\operatorname{Aut}(G)$ | $C_{222}.C_{18}.C_2^4$ |
$\operatorname{Aut}(H)$ | $(A_4\times \He_3).C_2.C_2^4$ |
$W$ | $C_1$, of order $1$ |
Related subgroups
Other information
Number of subgroups in this autjugacy class | $37$ |
Number of conjugacy classes in this autjugacy class | $1$ |
Möbius function | $-1$ |
Projective image | $F_{37}$ |