Properties

Label 15984.a.2664.d1
Order $ 2 \cdot 3 $
Index $ 2^{3} \cdot 3^{2} \cdot 37 $
Normal No

Downloads

Learn more

Subgroup ($H$) information

Description:$C_6$
Order: \(6\)\(\medspace = 2 \cdot 3 \)
Index: \(2664\)\(\medspace = 2^{3} \cdot 3^{2} \cdot 37 \)
Exponent: \(6\)\(\medspace = 2 \cdot 3 \)
Generators: $a^{18}b^{6}, b^{148}$ Copy content Toggle raw display
Nilpotency class: $1$
Derived length: $1$

The subgroup is cyclic (hence abelian, nilpotent, solvable, supersolvable, monomial, elementary ($p = 2,3$), hyperelementary, metacyclic, metabelian, a Z-group, and an A-group).

Ambient group ($G$) information

Description: $C_{12}\times F_{37}$
Order: \(15984\)\(\medspace = 2^{4} \cdot 3^{3} \cdot 37 \)
Exponent: \(1332\)\(\medspace = 2^{2} \cdot 3^{2} \cdot 37 \)
Derived length:$2$

The ambient group is nonabelian, metacyclic (hence solvable, supersolvable, monomial, and metabelian), and an A-group.

Automorphism information

While the subgroup $H$ is not characteristic, the stabilizer $S$ of $H$ in the automorphism group $\operatorname{Aut}(G)$ of the ambient group acts on $H$, yielding a homomorphism $\operatorname{res} : S \to \operatorname{Aut}(H)$. The image of $\operatorname{res}$ on the inner automorphisms $\operatorname{Inn}(G) \cap S$ is the Weyl group $W = N_G(H) / Z_G(H)$.

$\operatorname{Aut}(G)$$C_{222}.C_{18}.C_2^4$
$\operatorname{Aut}(H)$ $C_2$, of order \(2\)
$W$$C_1$, of order $1$

Related subgroups

Centralizer:$C_{12}\times C_{36}$
Normalizer:$C_{12}\times C_{36}$
Normal closure:$C_3\times D_{74}$
Core:$C_3$
Minimal over-subgroups:$C_3\times D_{37}$$C_3\times C_6$$C_2\times C_6$$C_{12}$
Maximal under-subgroups:$C_3$$C_2$

Other information

Number of subgroups in this autjugacy class$74$
Number of conjugacy classes in this autjugacy class$2$
Möbius function$0$
Projective image$C_4\times F_{37}$