Properties

Label 15840.q.66.a1.a1
Order $ 2^{4} \cdot 3 \cdot 5 $
Index $ 2 \cdot 3 \cdot 11 $
Normal No

Downloads

Learn more

Subgroup ($H$) information

Description:$C_2\times S_5$
Order: \(240\)\(\medspace = 2^{4} \cdot 3 \cdot 5 \)
Index: \(66\)\(\medspace = 2 \cdot 3 \cdot 11 \)
Exponent: \(60\)\(\medspace = 2^{2} \cdot 3 \cdot 5 \)
Generators: $\langle(12,13), (1,3,7,10,11,4)(2,6,9)(5,8), (1,7)(2,8)(3,10)(4,11)\rangle$ Copy content Toggle raw display
Derived length: $1$

The subgroup is maximal, nonabelian, nonsolvable, and rational.

Ambient group ($G$) information

Description: $C_2\times M_{11}$
Order: \(15840\)\(\medspace = 2^{5} \cdot 3^{2} \cdot 5 \cdot 11 \)
Exponent: \(1320\)\(\medspace = 2^{3} \cdot 3 \cdot 5 \cdot 11 \)
Derived length:$1$

The ambient group is nonabelian and nonsolvable.

Automorphism information

While the subgroup $H$ is not characteristic, the stabilizer $S$ of $H$ in the automorphism group $\operatorname{Aut}(G)$ of the ambient group acts on $H$, yielding a homomorphism $\operatorname{res} : S \to \operatorname{Aut}(H)$. The image of $\operatorname{res}$ on the inner automorphisms $\operatorname{Inn}(G) \cap S$ is the Weyl group $W = N_G(H) / Z_G(H)$.

$\operatorname{Aut}(G)$$M_{11}$, of order \(7920\)\(\medspace = 2^{4} \cdot 3^{2} \cdot 5 \cdot 11 \)
$\operatorname{Aut}(H)$ $C_2\times S_5$, of order \(240\)\(\medspace = 2^{4} \cdot 3 \cdot 5 \)
$W$$S_5$, of order \(120\)\(\medspace = 2^{3} \cdot 3 \cdot 5 \)

Related subgroups

Centralizer:$C_2$
Normalizer:$C_2\times S_5$
Normal closure:$C_2\times M_{11}$
Core:$C_2$
Minimal over-subgroups:$C_2\times M_{11}$
Maximal under-subgroups:$C_2\times A_5$$S_5$$S_5$$C_2\times S_4$$C_2\times F_5$$C_2\times D_6$

Other information

Number of subgroups in this conjugacy class$66$
Möbius function$-1$
Projective image$M_{11}$