Subgroup ($H$) information
| Description: | $D_{198}$ |
| Order: | \(396\)\(\medspace = 2^{2} \cdot 3^{2} \cdot 11 \) |
| Index: | \(4\)\(\medspace = 2^{2} \) |
| Exponent: | \(198\)\(\medspace = 2 \cdot 3^{2} \cdot 11 \) |
| Generators: |
$abc^{31}, c^{176}, c^{18}, b^{2}, c^{132}$
|
| Derived length: | $2$ |
The subgroup is characteristic (hence normal), nonabelian, metacyclic (hence solvable, supersolvable, monomial, and metabelian), hyperelementary for $p = 2$, and an A-group.
Ambient group ($G$) information
| Description: | $D_{22}.D_{18}$ |
| Order: | \(1584\)\(\medspace = 2^{4} \cdot 3^{2} \cdot 11 \) |
| Exponent: | \(396\)\(\medspace = 2^{2} \cdot 3^{2} \cdot 11 \) |
| Derived length: | $2$ |
The ambient group is nonabelian, supersolvable (hence solvable and monomial), hyperelementary for $p = 2$, and metabelian.
Quotient group ($Q$) structure
| Description: | $C_2^2$ |
| Order: | \(4\)\(\medspace = 2^{2} \) |
| Exponent: | \(2\) |
| Automorphism Group: | $S_3$, of order \(6\)\(\medspace = 2 \cdot 3 \) |
| Outer Automorphisms: | $S_3$, of order \(6\)\(\medspace = 2 \cdot 3 \) |
| Derived length: | $1$ |
The quotient is abelian (hence nilpotent, solvable, supersolvable, monomial, metabelian, and an A-group), a $p$-group (hence elementary and hyperelementary), metacyclic, and rational.
Automorphism information
Since the subgroup $H$ is characteristic, the automorphism group $\operatorname{Aut}(G)$ of the ambient group acts on $H$, yielding a homomorphism $\operatorname{res} : \operatorname{Aut}(G) \to \operatorname{Aut}(H)$. The image of $\operatorname{res}$ on the inner automorphism group $\operatorname{Inn}(G)$ is the Weyl group $W = G / Z_G(H)$.
| $\operatorname{Aut}(G)$ | $C_{99}.C_{30}.C_2^4$ |
| $\operatorname{Aut}(H)$ | $C_{99}.C_{30}.C_2^2$ |
| $\card{\operatorname{res}(\operatorname{Aut}(G))}$ | \(11880\)\(\medspace = 2^{3} \cdot 3^{3} \cdot 5 \cdot 11 \) |
| $\card{\operatorname{ker}(\operatorname{res})}$ | \(4\)\(\medspace = 2^{2} \) |
| $W$ | $D_9\times D_{22}$, of order \(792\)\(\medspace = 2^{3} \cdot 3^{2} \cdot 11 \) |
Related subgroups
| Centralizer: | $C_2$ | |||
| Normalizer: | $D_{22}.D_{18}$ | |||
| Minimal over-subgroups: | $C_{99}:D_4$ | $C_9:D_{44}$ | $D_{99}:C_4$ | |
| Maximal under-subgroups: | $C_{198}$ | $D_{99}$ | $D_{66}$ | $D_{18}$ |
Other information
| Möbius function | $2$ |
| Projective image | $D_9\times D_{22}$ |