Properties

Label 1584.122.4.c1.a1
Order $ 2^{2} \cdot 3^{2} \cdot 11 $
Index $ 2^{2} $
Normal Yes

Downloads

Learn more

Subgroup ($H$) information

Description:$D_{198}$
Order: \(396\)\(\medspace = 2^{2} \cdot 3^{2} \cdot 11 \)
Index: \(4\)\(\medspace = 2^{2} \)
Exponent: \(198\)\(\medspace = 2 \cdot 3^{2} \cdot 11 \)
Generators: $abc^{31}, c^{176}, c^{18}, b^{2}, c^{132}$ Copy content Toggle raw display
Derived length: $2$

The subgroup is characteristic (hence normal), nonabelian, metacyclic (hence solvable, supersolvable, monomial, and metabelian), hyperelementary for $p = 2$, and an A-group.

Ambient group ($G$) information

Description: $D_{22}.D_{18}$
Order: \(1584\)\(\medspace = 2^{4} \cdot 3^{2} \cdot 11 \)
Exponent: \(396\)\(\medspace = 2^{2} \cdot 3^{2} \cdot 11 \)
Derived length:$2$

The ambient group is nonabelian, supersolvable (hence solvable and monomial), hyperelementary for $p = 2$, and metabelian.

Quotient group ($Q$) structure

Description: $C_2^2$
Order: \(4\)\(\medspace = 2^{2} \)
Exponent: \(2\)
Automorphism Group: $S_3$, of order \(6\)\(\medspace = 2 \cdot 3 \)
Outer Automorphisms: $S_3$, of order \(6\)\(\medspace = 2 \cdot 3 \)
Derived length: $1$

The quotient is abelian (hence nilpotent, solvable, supersolvable, monomial, metabelian, and an A-group), a $p$-group (hence elementary and hyperelementary), metacyclic, and rational.

Automorphism information

Since the subgroup $H$ is characteristic, the automorphism group $\operatorname{Aut}(G)$ of the ambient group acts on $H$, yielding a homomorphism $\operatorname{res} : \operatorname{Aut}(G) \to \operatorname{Aut}(H)$. The image of $\operatorname{res}$ on the inner automorphism group $\operatorname{Inn}(G)$ is the Weyl group $W = G / Z_G(H)$.

$\operatorname{Aut}(G)$$C_{99}.C_{30}.C_2^4$
$\operatorname{Aut}(H)$ $C_{99}.C_{30}.C_2^2$
$\card{\operatorname{res}(\operatorname{Aut}(G))}$\(11880\)\(\medspace = 2^{3} \cdot 3^{3} \cdot 5 \cdot 11 \)
$\card{\operatorname{ker}(\operatorname{res})}$\(4\)\(\medspace = 2^{2} \)
$W$$D_9\times D_{22}$, of order \(792\)\(\medspace = 2^{3} \cdot 3^{2} \cdot 11 \)

Related subgroups

Centralizer:$C_2$
Normalizer:$D_{22}.D_{18}$
Minimal over-subgroups:$C_{99}:D_4$$C_9:D_{44}$$D_{99}:C_4$
Maximal under-subgroups:$C_{198}$$D_{99}$$D_{66}$$D_{18}$

Other information

Möbius function$2$
Projective image$D_9\times D_{22}$