Properties

Label 1584.122.8.d1.a1
Order $ 2 \cdot 3^{2} \cdot 11 $
Index $ 2^{3} $
Normal No

Downloads

Learn more

Subgroup ($H$) information

Description:$D_{99}$
Order: \(198\)\(\medspace = 2 \cdot 3^{2} \cdot 11 \)
Index: \(8\)\(\medspace = 2^{3} \)
Exponent: \(198\)\(\medspace = 2 \cdot 3^{2} \cdot 11 \)
Generators: $abc^{31}, c^{18}, c^{132}, c^{176}$ Copy content Toggle raw display
Derived length: $2$

The subgroup is nonabelian, a Z-group (hence solvable, supersolvable, monomial, metacyclic, metabelian, and an A-group), and hyperelementary for $p = 2$.

Ambient group ($G$) information

Description: $D_{22}.D_{18}$
Order: \(1584\)\(\medspace = 2^{4} \cdot 3^{2} \cdot 11 \)
Exponent: \(396\)\(\medspace = 2^{2} \cdot 3^{2} \cdot 11 \)
Derived length:$2$

The ambient group is nonabelian, supersolvable (hence solvable and monomial), hyperelementary for $p = 2$, and metabelian.

Automorphism information

While the subgroup $H$ is not characteristic, the stabilizer $S$ of $H$ in the automorphism group $\operatorname{Aut}(G)$ of the ambient group acts on $H$, yielding a homomorphism $\operatorname{res} : S \to \operatorname{Aut}(H)$. The image of $\operatorname{res}$ on the inner automorphisms $\operatorname{Inn}(G) \cap S$ is the Weyl group $W = N_G(H) / Z_G(H)$.

$\operatorname{Aut}(G)$$C_{99}.C_{30}.C_2^4$
$\operatorname{Aut}(H)$ $D_{99}:C_{30}$, of order \(5940\)\(\medspace = 2^{2} \cdot 3^{3} \cdot 5 \cdot 11 \)
$\operatorname{res}(S)$$D_{99}:C_{30}$, of order \(5940\)\(\medspace = 2^{2} \cdot 3^{3} \cdot 5 \cdot 11 \)
$\card{\operatorname{ker}(\operatorname{res})}$\(4\)\(\medspace = 2^{2} \)
$W$$D_9\times D_{11}$, of order \(396\)\(\medspace = 2^{2} \cdot 3^{2} \cdot 11 \)

Related subgroups

Centralizer:$C_2$
Normalizer:$D_{99}:C_4$
Normal closure:$D_{198}$
Core:$C_{99}$
Minimal over-subgroups:$D_{198}$
Maximal under-subgroups:$C_{99}$$D_{33}$$D_9$

Other information

Number of subgroups in this conjugacy class$2$
Möbius function$0$
Projective image$D_{22}.D_{18}$