Properties

Label 1584.122.8.a1.a1
Order $ 2 \cdot 3^{2} \cdot 11 $
Index $ 2^{3} $
Normal Yes

Downloads

Learn more

Subgroup ($H$) information

Description:$C_{198}$
Order: \(198\)\(\medspace = 2 \cdot 3^{2} \cdot 11 \)
Index: \(8\)\(\medspace = 2^{3} \)
Exponent: \(198\)\(\medspace = 2 \cdot 3^{2} \cdot 11 \)
Generators: $b^{2}, c^{18}, c^{132}, c^{176}$ Copy content Toggle raw display
Nilpotency class: $1$
Derived length: $1$

The subgroup is the commutator subgroup (hence characteristic and normal) and cyclic (hence abelian, nilpotent, solvable, supersolvable, monomial, elementary ($p = 2,3,11$), hyperelementary, metacyclic, metabelian, a Z-group, and an A-group).

Ambient group ($G$) information

Description: $D_{22}.D_{18}$
Order: \(1584\)\(\medspace = 2^{4} \cdot 3^{2} \cdot 11 \)
Exponent: \(396\)\(\medspace = 2^{2} \cdot 3^{2} \cdot 11 \)
Derived length:$2$

The ambient group is nonabelian, supersolvable (hence solvable and monomial), hyperelementary for $p = 2$, and metabelian.

Quotient group ($Q$) structure

Description: $C_2^3$
Order: \(8\)\(\medspace = 2^{3} \)
Exponent: \(2\)
Automorphism Group: $\PSL(2,7)$, of order \(168\)\(\medspace = 2^{3} \cdot 3 \cdot 7 \)
Outer Automorphisms: $\PSL(2,7)$, of order \(168\)\(\medspace = 2^{3} \cdot 3 \cdot 7 \)
Nilpotency class: $1$
Derived length: $1$

The quotient is abelian (hence nilpotent, solvable, supersolvable, monomial, metabelian, and an A-group), a $p$-group (hence elementary and hyperelementary), and rational.

Automorphism information

Since the subgroup $H$ is characteristic, the automorphism group $\operatorname{Aut}(G)$ of the ambient group acts on $H$, yielding a homomorphism $\operatorname{res} : \operatorname{Aut}(G) \to \operatorname{Aut}(H)$. The image of $\operatorname{res}$ on the inner automorphism group $\operatorname{Inn}(G)$ is the Weyl group $W = G / Z_G(H)$.

$\operatorname{Aut}(G)$$C_{99}.C_{30}.C_2^4$
$\operatorname{Aut}(H)$ $C_2\times C_{30}$, of order \(60\)\(\medspace = 2^{2} \cdot 3 \cdot 5 \)
$\operatorname{res}(\operatorname{Aut}(G))$$C_2\times C_{30}$, of order \(60\)\(\medspace = 2^{2} \cdot 3 \cdot 5 \)
$\card{\operatorname{ker}(\operatorname{res})}$\(792\)\(\medspace = 2^{3} \cdot 3^{2} \cdot 11 \)
$W$$C_2^2$, of order \(4\)\(\medspace = 2^{2} \)

Related subgroups

Centralizer:$C_2\times C_{198}$
Normalizer:$D_{22}.D_{18}$
Minimal over-subgroups:$C_2\times C_{198}$$C_9\times D_{22}$$D_{198}$$C_9:C_{44}$$C_9:C_{44}$$C_{11}:C_{36}$$C_{99}:C_4$
Maximal under-subgroups:$C_{99}$$C_{66}$$C_{18}$

Other information

Möbius function$-8$
Projective image$D_9\times D_{22}$