Properties

Label 1568.847.28.j1
Order $ 2^{3} \cdot 7 $
Index $ 2^{2} \cdot 7 $
Normal No

Downloads

Learn more

Subgroup ($H$) information

Description:$C_4\times D_7$
Order: \(56\)\(\medspace = 2^{3} \cdot 7 \)
Index: \(28\)\(\medspace = 2^{2} \cdot 7 \)
Exponent: \(28\)\(\medspace = 2^{2} \cdot 7 \)
Generators: $b, d^{14}, d^{4}, d^{7}$ Copy content Toggle raw display
Derived length: $2$

The subgroup is nonabelian, metacyclic (hence solvable, supersolvable, monomial, and metabelian), hyperelementary for $p = 2$, and an A-group.

Ambient group ($G$) information

Description: $C_2.D_{14}^2$
Order: \(1568\)\(\medspace = 2^{5} \cdot 7^{2} \)
Exponent: \(28\)\(\medspace = 2^{2} \cdot 7 \)
Derived length:$2$

The ambient group is nonabelian, supersolvable (hence solvable and monomial), and metabelian.

Automorphism information

While the subgroup $H$ is not characteristic, the stabilizer $S$ of $H$ in the automorphism group $\operatorname{Aut}(G)$ of the ambient group acts on $H$, yielding a homomorphism $\operatorname{res} : S \to \operatorname{Aut}(H)$. The image of $\operatorname{res}$ on the inner automorphisms $\operatorname{Inn}(G) \cap S$ is the Weyl group $W = N_G(H) / Z_G(H)$.

$\operatorname{Aut}(G)$$C_7:D_7:C_3.C_2^4.C_6.C_2^5$
$\operatorname{Aut}(H)$ $C_2^2\times F_7$, of order \(168\)\(\medspace = 2^{3} \cdot 3 \cdot 7 \)
$\operatorname{res}(S)$$C_2^2\times F_7$, of order \(168\)\(\medspace = 2^{3} \cdot 3 \cdot 7 \)
$\card{\operatorname{ker}(\operatorname{res})}$\(96\)\(\medspace = 2^{5} \cdot 3 \)
$W$$D_{14}$, of order \(28\)\(\medspace = 2^{2} \cdot 7 \)

Related subgroups

Centralizer:$C_2\times C_4$
Normalizer:$Q_8\times D_{14}$
Normal closure:$C_{28}:D_7$
Core:$C_{28}$
Minimal over-subgroups:$C_{28}:D_7$$C_4\times D_{14}$$Q_8\times D_7$
Maximal under-subgroups:$C_{28}$$D_{14}$$C_7:C_4$$C_2\times C_4$

Other information

Number of subgroups in this autjugacy class$56$
Number of conjugacy classes in this autjugacy class$8$
Möbius function$-2$
Projective image$D_{14}^2$