Subgroup ($H$) information
Description: | $Q_8\times D_{14}$ |
Order: | \(224\)\(\medspace = 2^{5} \cdot 7 \) |
Index: | \(7\) |
Exponent: | \(28\)\(\medspace = 2^{2} \cdot 7 \) |
Generators: |
$a, d^{4}, c^{7}, d^{7}, b, d^{14}$
|
Derived length: | $2$ |
The subgroup is maximal, nonabelian, supersolvable (hence solvable and monomial), hyperelementary for $p = 2$, and metabelian.
Ambient group ($G$) information
Description: | $C_2.D_{14}^2$ |
Order: | \(1568\)\(\medspace = 2^{5} \cdot 7^{2} \) |
Exponent: | \(28\)\(\medspace = 2^{2} \cdot 7 \) |
Derived length: | $2$ |
The ambient group is nonabelian, supersolvable (hence solvable and monomial), and metabelian.
Automorphism information
While the subgroup $H$ is not characteristic, the stabilizer $S$ of $H$ in the automorphism group $\operatorname{Aut}(G)$ of the ambient group acts on $H$, yielding a homomorphism $\operatorname{res} : S \to \operatorname{Aut}(H)$. The image of $\operatorname{res}$ on the inner automorphisms $\operatorname{Inn}(G) \cap S$ is the Weyl group $W = N_G(H) / Z_G(H)$.
$\operatorname{Aut}(G)$ | $C_7:D_7:C_3.C_2^4.C_6.C_2^5$ |
$\operatorname{Aut}(H)$ | $C_2\wr D_6.F_7$, of order \(32256\)\(\medspace = 2^{9} \cdot 3^{2} \cdot 7 \) |
$\operatorname{res}(S)$ | $F_7\times C_2^5:D_4$, of order \(10752\)\(\medspace = 2^{9} \cdot 3 \cdot 7 \) |
$\card{\operatorname{ker}(\operatorname{res})}$ | \(6\)\(\medspace = 2 \cdot 3 \) |
$W$ | $C_2\times D_{14}$, of order \(56\)\(\medspace = 2^{3} \cdot 7 \) |
Related subgroups
Other information
Number of subgroups in this autjugacy class | $14$ |
Number of conjugacy classes in this autjugacy class | $2$ |
Möbius function | $-1$ |
Projective image | $D_7\times D_{14}$ |