Properties

Label 1568.847.7.a1
Order $ 2^{5} \cdot 7 $
Index $ 7 $
Normal No

Downloads

Learn more

Subgroup ($H$) information

Description:$Q_8\times D_{14}$
Order: \(224\)\(\medspace = 2^{5} \cdot 7 \)
Index: \(7\)
Exponent: \(28\)\(\medspace = 2^{2} \cdot 7 \)
Generators: $a, d^{4}, c^{7}, d^{7}, b, d^{14}$ Copy content Toggle raw display
Derived length: $2$

The subgroup is maximal, nonabelian, supersolvable (hence solvable and monomial), hyperelementary for $p = 2$, and metabelian.

Ambient group ($G$) information

Description: $C_2.D_{14}^2$
Order: \(1568\)\(\medspace = 2^{5} \cdot 7^{2} \)
Exponent: \(28\)\(\medspace = 2^{2} \cdot 7 \)
Derived length:$2$

The ambient group is nonabelian, supersolvable (hence solvable and monomial), and metabelian.

Automorphism information

While the subgroup $H$ is not characteristic, the stabilizer $S$ of $H$ in the automorphism group $\operatorname{Aut}(G)$ of the ambient group acts on $H$, yielding a homomorphism $\operatorname{res} : S \to \operatorname{Aut}(H)$. The image of $\operatorname{res}$ on the inner automorphisms $\operatorname{Inn}(G) \cap S$ is the Weyl group $W = N_G(H) / Z_G(H)$.

$\operatorname{Aut}(G)$$C_7:D_7:C_3.C_2^4.C_6.C_2^5$
$\operatorname{Aut}(H)$ $C_2\wr D_6.F_7$, of order \(32256\)\(\medspace = 2^{9} \cdot 3^{2} \cdot 7 \)
$\operatorname{res}(S)$$F_7\times C_2^5:D_4$, of order \(10752\)\(\medspace = 2^{9} \cdot 3 \cdot 7 \)
$\card{\operatorname{ker}(\operatorname{res})}$\(6\)\(\medspace = 2 \cdot 3 \)
$W$$C_2\times D_{14}$, of order \(56\)\(\medspace = 2^{3} \cdot 7 \)

Related subgroups

Centralizer:$C_2^2$
Normalizer:$Q_8\times D_{14}$
Normal closure:$C_2.D_{14}^2$
Core:$C_{14}:Q_8$
Minimal over-subgroups:$C_2.D_{14}^2$
Maximal under-subgroups:$C_{14}:Q_8$$C_4\times D_{14}$$C_4\times D_{14}$$Q_8\times C_{14}$$C_{14}:Q_8$$Q_8\times D_7$$C_2^2\times Q_8$

Other information

Number of subgroups in this autjugacy class$14$
Number of conjugacy classes in this autjugacy class$2$
Möbius function$-1$
Projective image$D_7\times D_{14}$