Properties

Label 1568.847.196.e1
Order $ 2^{3} $
Index $ 2^{2} \cdot 7^{2} $
Normal No

Downloads

Learn more

Subgroup ($H$) information

Description:$C_2\times C_4$
Order: \(8\)\(\medspace = 2^{3} \)
Index: \(196\)\(\medspace = 2^{2} \cdot 7^{2} \)
Exponent: \(4\)\(\medspace = 2^{2} \)
Generators: $b, d^{21}$ Copy content Toggle raw display
Nilpotency class: $1$
Derived length: $1$

The subgroup is abelian (hence nilpotent, solvable, supersolvable, monomial, metabelian, and an A-group), a $p$-group (hence elementary and hyperelementary), and metacyclic.

Ambient group ($G$) information

Description: $C_2.D_{14}^2$
Order: \(1568\)\(\medspace = 2^{5} \cdot 7^{2} \)
Exponent: \(28\)\(\medspace = 2^{2} \cdot 7 \)
Derived length:$2$

The ambient group is nonabelian, supersolvable (hence solvable and monomial), and metabelian.

Automorphism information

While the subgroup $H$ is not characteristic, the stabilizer $S$ of $H$ in the automorphism group $\operatorname{Aut}(G)$ of the ambient group acts on $H$, yielding a homomorphism $\operatorname{res} : S \to \operatorname{Aut}(H)$. The image of $\operatorname{res}$ on the inner automorphisms $\operatorname{Inn}(G) \cap S$ is the Weyl group $W = N_G(H) / Z_G(H)$.

$\operatorname{Aut}(G)$$C_7:D_7:C_3.C_2^4.C_6.C_2^5$
$\operatorname{Aut}(H)$ $D_4$, of order \(8\)\(\medspace = 2^{3} \)
$\operatorname{res}(S)$$C_2^2$, of order \(4\)\(\medspace = 2^{2} \)
$\card{\operatorname{ker}(\operatorname{res})}$\(1152\)\(\medspace = 2^{7} \cdot 3^{2} \)
$W$$C_2$, of order \(2\)

Related subgroups

Centralizer:$C_2^2\times C_4$
Normalizer:$C_2^2\times Q_8$
Normal closure:$C_{28}:D_7$
Core:$C_4$
Minimal over-subgroups:$C_4\times D_7$$C_4\times D_7$$C_2^2\times C_4$$C_2\times Q_8$
Maximal under-subgroups:$C_4$$C_2^2$$C_4$

Other information

Number of subgroups in this autjugacy class$196$
Number of conjugacy classes in this autjugacy class$4$
Möbius function$2$
Projective image$D_{14}^2$